#### Heavy Flavour Content of the Proton

Paul Thompson, Birmingham Seminar, 8th October 2008

- Reminder of HERA and kinematics
- Why measure proton structure (PDFs)?
- Why measure heavy flavours?
- Experimental Techniques
- charm and beauty cross sections at HERA
- Outlook



# HERA ep collider



- Collided protons with  $e^{\pm}$  92-07
- E<sub>e</sub> : 27.5 GeV
- E<sub>p</sub> : 920 GeV
- Centre of mass energy :  $\sqrt{s} = 320 \, GeV$  Deep Inelastic Scattering DIS



• Q<sup>2</sup> corresponds to the spatial resolution of probe

• 
$$\lambda \sim 1/\sqrt{Q^2}$$
  $Q_{\rm max}^2 \sim 10^5 \, GeV^2$ 

• 
$$\lambda_{\min} \sim 10^{-18} m \sim R_{proton} / 1000$$

#### Available Data



• In total ~500pb<sup>-1</sup> of high energy data collected per experiment

- luminosity upgrade in 2001
- detectors adjusted to accommodate focussing magnets
- Low energy running to measure  ${\rm F}_{\rm L}$

Many preliminary analyses on full HERA II data Working on final publication and combination of results

### Deep Inelastic Scattering (DIS)



- DIS cross section can be described in terms of:
  - Q<sup>2</sup> : Virtuality of the intermediate boson

 $Q^2 = s x y$ 

• x : Bjorken scaling factor

-fraction of proton's momentum carried by struck quark

• y : Inelasticity

-energy fraction transferred from lepton in proton rest frame

#### Neutral Current Cross Section F<sub>2</sub>





F<sub>2</sub> – dominant contribution to the cross section

$$F_2 = \sum_q e_q^2 x \left( \mathbf{q} + \overline{\mathbf{q}} \right)$$

Scaling violations indicate presence of gluons

Data evolution with Q<sup>2</sup> (at fixed *x*) described by perturbative QCD 5

### **QCD** Factorisation and Proton PDF



 $F_2(x, Q^2) = \sum_k f_k(\mu) \otimes C_k^j(Q, m, \alpha_s(\mu))$ 

 $f_k$  are parton density functions – parameterised at  $Q_0{}^2$  and evolved to high  $Q^2$  using DGLAP equations

C<sub>k</sub><sup>j</sup> perturbative coefficient functions

#### PDFs for the LHC

#### LHC parton kinematics



momentum fractions  $x_1$  and  $x_2$  determined by mass and rapidity of X

x dependence of  $f(x, Q^2)$ determined by fit to data,  $Q^2$ dependence determined by DGLAP equations

full NNLO DGLAP now known\*, also with small x, QED etc improvements

\*Moch, Vermaseren, Vogt (2004)



### Why do we need PDFs?

- high precision (SM and BSM) cross section predictions require precision pdfs:  $\delta\sigma_{th} = \delta\sigma_{pdf} + \dots$
- improved signal and background predictions  $\rightarrow$  easier to spot new physics deviations
- 'standard candle' processes (e.g.  $\sigma(Z)$ ) to
  - check formalism (factorisation, DGLAP, ...)
  - measure machine luminosity?
- learning more about pdfs from LHC measurements. e.g.
  - high- $E_T$  jets  $\rightarrow$  gluon?
  - $W^+, W^-, Z^0 \rightarrow quarks?$
  - forward DY  $\rightarrow$  small *x*?

• • •

#### How Important Is PDF Precision?

- Example 1:  $\sigma(M_{H}=120 \text{ GeV})$  @ LHC  $\delta \sigma_{pdf} \approx \pm 3\%, \quad \delta \sigma_{ptNNL0} \approx \pm 10\%$   $\rightarrow \delta \sigma_{ptNNLL} \approx \pm 8\%$  $\rightarrow \delta \sigma_{theory} \approx \pm 9\%$
- Example 2:  $\sigma(Z^0)$  @ LHC  $\delta \sigma_{pdf} \approx \pm 3\%$ ,  $\delta \sigma_{ptNNL0} \approx \pm 2\%$  $\rightarrow \delta \sigma_{theory} \approx \pm 4\%$





### Production of Heavy Quarks at HERA



Predominantly via boson gluon fusion

Test of perturbative QCD:

multi-scale problem ( $Q^2$ ,  $m_b^2$ ,  $p_t^2$ )

Directly sensitive to gluon density in the proton (PDFs)

At HERA we can measure the contribution of c and b to the total DIS cross section  $F_2^{bb}$  and  $F_2^{cc}$   $e^+$   $e^+$ 





F<sub>2</sub><sup>bb</sup> measurements at high Q<sup>2</sup> important for LHC e.g. bb->H



#### **Predictions for Heavy Quark Production**

#### Massive scheme: $\rightarrow m_b$

- b massive
- neglects  $[\alpha_s \ln(Q^2/m_b^2)]^n$
- $\rightarrow$  Perturbative production:

Massless scheme:  $\rightarrow p_T, Q^2$ 

- b massless!!!
- Resums  $[\alpha_s \ln(Q^2/m_b^2)]^n$
- $\rightarrow$  b also in Proton and Photon!



CTEQ6.5 uses a *General Mass* scheme changed from a *massless* in CTEQ6.1 MRSTW improved their *General Mass* scheme from MRST2004 to MSTW2006

Thorne, Tung arXiv:0809.0714, P.T. hep-ph/0703103 <sup>12</sup>

#### Impact on W, Z @ LHC



- Correct heavy flavour treatment affects light partons!
- changes in CTEQ 6.1 -> CTEQ 6.6 due to c, b, s treatment
- Improved agreement between latest PDFs

#### Heavy Quark contribution to DIS cross section

#### HERA I result:

- fraction of total DIS cross section from charm and beauty
- large charm fraction(~30%)
- small beauty fraction ~% (lower at low Q<sup>2</sup>)
- mass thresholds visible
- reasonable description by pQCD



# Flavour Tagging - Vertex Detectors

#### **H1**



Installed for HERA II



- Double layer double sided strips
- •Precise determination of impact parameter in transverse plane
- •Resolution of  $|\delta|$  for hits in both layers;

$$33\mu m \oplus \frac{90\mu m}{P_T} [GeV]$$

Installed 1997 (first pub 2004)! <sup>15</sup>

# Tagging Heavy Quarks (b)

Beauty quarks rarely produced, use properties of beauty hadrons:

semileptonic decays(μ, e)

mass

- transverse momentum p<sub>t</sub><sup>rel</sup> relative to jet axis

- lifetime (vertex detectors)
  - reconstrucion of a secondary vertex
  - impact parameter  $\boldsymbol{\delta}$



Jet

B'

B

### Signed Impact Parameter $\delta$

Signed impact parameter  $\delta$ , Significance =  $\delta/\sigma(\delta)$ 



Charm and beauty asymmetric (positive) due to lifetime Light flavours mostly symmetric (resolution dominates)

Similarly for secondary vertices (>=2 tracks), decay length L and decay length significance =L/ $\sigma$ (L)

### Tagging Heavy Quarks (c)

resonances D<sup>\*</sup>, D<sup>+</sup>, D<sup>0</sup>,... Full HERA II statistics (~350pb<sup>-1</sup>)

resonances and decay length tagging using vertex detectors





#### **D\* Cross Section**



H1 prelim-08-072 H1 prelim-08-074

- good description by NLO calculation (HVQDIS) in wide Q<sup>2</sup> range
- Also at large Q<sup>2</sup>, where massive approach not expected to be appropriate

#### **D\* Cross Section**



- differential cross sections of several D mesons measured
- reasonably described by NLO QCD (HVQDIS)
- double differential in x and  $Q^2$ allows extraction of  $F_2^{cc}$



### **D\*** Fragmentation



#### **D\*** Fragmentation



- RAPGAP MC: p<sub>T,jet</sub>> 3 GeV, parameters consistent with e<sup>+</sup>e<sup>-</sup>
- no jet sample (low photon gluon COM) needs harder frag.
- Similar story for NLO QCD DESY-08-080 (Juraj

(Juraj Bracinik)

### Charm and Beauty Cross Section





ZEUS

• Q² > 20 GeV², 0.01< y < 0.7, P\_T $\mu$  > 1.5 GeV, -1.6 <  $\eta_{\mu}$  < 2.3

• *c* and *b* cross sections described by NLO QCD(HVQDIS)

#### Charm and Beauty Cross Section

ZEUS



- beauty tends to be above NLO QCD at low  $Q^2$
- may be measured double differentially in  $x_{1}$   $Q^{2}$  and extrapolated to full phase space to compare  $F_2^{cc}$ ,  $F_2^{bb}$

### H1 Inclusive Analysis

H1 prelim-08-173

- Publication on HERA I data (54 pb<sup>-1</sup>) in 2004 & 2005
- H1 CST rebuilt to account for HERA II beamline
- Preliminary analysis on full HERA II data (190pb<sup>-1</sup>) this summer (H1prelim-08-173)
- Inclusive analysis: use all tracks with hits in silicon detector ( $p_t > 0.3 \text{ GeV}$ )
- Precise determination of impact parameter in transverse plane
- Divide events into 1 track, 2 track and >= 3 track samples

#### Signed Impact Parameter (H1)



Charm and beauty asymmetric due to lifetime, Light flavours mostly symmetric MC describes resolution!

### Signifcance



Significance for  $N_{track}=1$  2<sup>nd</sup> highest significance for  $N_{track}=2$ 

#### Neural Network

- Improve *c*, *b* separation power (especially at low Q<sup>2</sup>): use neural network for >= 3 track events
- Choose inputs which are different for c and b, and largely physics model independent
- Inputs: S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub>, S<sub>L</sub>, track  $p_t$ , 2<sup>nd</sup> highest track  $p_t$ , number of CST tracks, number of tracks associated to secondary vertex
- Network trained with b as "signal" c as "background". Light flavours will be subtracted out due to their symmetry (see later)

#### **Neural Network Inputs**



#### **Neural Network Input**



30

#### Neural Network Input (Neg. subtracted)





31

#### **Neural Network Output**

• Sign given by S<sub>1</sub>. Subtract -'ve from +'ve to reduce systematic error due to resolution and light contribution



#### **Extracting Flavour Fractions**

These distributions are fitted for  $\rho_c$ ,  $\rho_b$  in each  $x, Q^2$  bin with  $\rho_{uds}$  constrained by total number of DIS events



$$f_{c} = \frac{\rho_{c} \cdot N_{c}^{gen}}{\rho_{c} \cdot N_{c}^{gen} + \rho_{b} N_{b}^{gen} + \rho_{uds} \cdot N_{uds}^{gen}}$$

#### Inclusive b cross section (H1)



- HERA I agrees with HERA I
- HERA II reaches lower Q<sup>2</sup> (NN)
- HERA I and HERA II data combined for improved precision

### Inclusive b Cross Section (HERA)



### Improvements in Theory



х

Status summer 2007 (e- data)

- MRST04 factor 2 larger than CTEQ at Q<sup>2</sup>=12 GeV<sup>2</sup>
- Chance to distinguish models
  with full HERA II data

• Since then MSTW08 was released which is in much better agreement with CTEQ (and data)!

#### Measurements of F<sub>2</sub><sup>bb</sup> (HERA)



- Beauty structure function versus  $Q^2$
- NNLO predictions available
- Differences between NLO and NNLO small except for  $Q^2 < (m_b)^2$

### Inclusive Charm Cross Section (H1)



- HERA I agrees with HERA II
- HERA II has finer binning for charm and reaches lower Q<sup>2</sup>

Reasonable description
 by GM VFNS PDFs from
 CTEQ and MSTW

• Also by PDF based on CCFM evolution.

#### Inclusive Charm Cross Section (HERA)



- comparison of different methods [acceptance]
- -Inclusive (H1 HERA I II VTX) [>70%]
- -Mu ptrel+ $\delta$  (ZEUS HERA II  $\mu$ ) [25-50%]
- -D\* cross sections [20-70%]
- different methods agree well
- wealth of precise measurements
- combine to improve precision

#### Measurements of F<sub>2</sub><sup>cc</sup>(HERA)



- Charm measurements span large range in Q<sup>2</sup> and x
- Theory differences for  $Q^2 < (2m_c)^2$

• These are the "massive" FFNS PDFs (because the D\* measurements involve model dependent extrapolations) and are not the latest GM VFNS technology

#### Conclusions

- Wealth of new measurements of the heavy flavour content of the proton from HERA data.
- Extraction of structure functions  $F_2^{cc}$  and  $F_2^{bb}$  allow comparison of many different measurement techniques.
- Data are described by latest (N)NLO pQCD calculations.
- Final results with full HERA statistics expected soon
- Data help to constrain theory mass treatments and PDFs in time for LHC!

#### Hope there are more prizes to discover at the LHC...!



#### Annual CERN Road Race Sept. 2008

# Back Up

#### Scale Uncertainty (c)





#### Scale Uncertainty (b)

