

CLIC Detectors and Physics

Jan Strube CERN

on behalf of the CLIC Detector and Physics study group

Outline

- The CLIC Accelerator
- Challenges for Detector Design
- The CLIC Detector and Physics Program
 - Simulation Studies
 - Detector Development
- Future Plans
- Summary

CLIC Layout at 3 TeV

CLIC Layout at 500 GeV

CLIC Staging Scenario

Central MDI & Interaction Region

The CLIC Beams

Parameter	CLIC at 3 TeV
L (cm ⁻² s ⁻¹)	5.9×10 ³⁴
BX separation	0.5 ns
#BX / train	312
Train duration (ns)	156
Rep. rate	50 Hz
$\sigma_{_{\rm X}}$ / $\sigma_{_{\rm y}}$ (nm)	≈ 45 / 1
σ _z (μm)	44

<u>Finite spread of beam energy</u> Reduction of luminosity (small effect for processes far from threshold)

Systematic effect on reconstruction, for example, slepton reconstruction

√s' / √s	0.5 TeV	3 TeV
> 99 %	62 %	35 %
> 90 %	89 %	54 %
> 70 %	99 %	76 %
> 50 %	~100 %	88 %

Background to Physics studies

Physics Goals Drive DetectorRequirements $h \rightarrow \mu^+\mu^-$ measurement uncertainty
vs. momentum resolution

 $\frac{\text{Momentum resolution}}{\text{Higgs Recoil, h} \rightarrow \mu^{+}\mu^{-}:} \\ \sigma(p_{T})/p_{T}^{-2} \sim 2x10^{-5} \text{ GeV}^{-1}}$

Jet Energy Resolution

Separation of heavy bosons, Gaugino, Triple Gauge Coupling $\sigma(E)/E = 3.5\%-5\%$

Flavor Tagging

 $\sigma_{r\phi} \approx 5\,\mu\mathrm{m} \oplus 15\,\mu\mathrm{m}/(p[\mathrm{GeV}]\sin^{\frac{3}{2}}\theta)$

W-Z separation

Challenges for Detector Design

PFA calorimetry

Calorimeters inside coil (track-shower matching) Full shower containment for operation at 3 TeV

Tracking

Low material budget Excellent impact parameter resolution

Forward region

QD0 inside detector \leftrightarrow compact design $\leftrightarrow 4\pi$ coverage

Detector Concepts for CLIC

CLIC_ILD

Gaseous Tracking 4 T Field

CLIC_SiD

All- Silicon Tracker 5 T Field Cost-constrained Design

~7 <u>m</u>

CLIC detector concepts

CLIC Detector Concepts Summary

	CLIC_ILD	CLIC_SID
Vertex Tracker	3 double layers r _i = 31 mm	5 layers r _i = 27 mm
Tracker	TPC, r _o = 1.8 m Silicon envelope	Silicon, r _o = 1.2 m
B-field	4 T	5 T
ECAL	SiW 23 X ₀	SiW 26 X ₀
HCAL barrel	W-Scint, 3x3 mm ² 7.5 λ	W-Scint, 3x3 mm ² 7.5 λ
HCAL endcap	Steel-Scint 7.5 λ	Steel-Scint 7.5 λ

Introduction to Particle Flow Reconstruction

Typical jet contents:

60% charged particles $\sigma(p_T)/p_T^2 \sim 2x10^{-5} \text{ GeV}^{-1}$ 30% photons $\sigma(E)/E < 20\% / \sqrt{E}$ 10% neutral hadrons $\sigma(E)/E > 50\% / \sqrt{E}$

Ideally, fully reconstruct the shower for each particle and match tracks to showers.

At higher jet energies, confusion (mis-matching of energy depositions and particles) deteriorates the resolution.

At even higher energies, leakages becomes a factor in the jet energy resolution.

PFA possible without high granularity At CLIC: High granularity essential for background reduction

Detector Readout

Triggerless readout of the whole bunch train Starting time of Physics event inside the train is identified offline

readout window

Subdetector	Reco Window	Hit Resolution
ECAL	10 ns	~ 1 ns
HCAL Endcap	10 ns	~ 1 ns
HCAL Barrel	100 ns	~ 1 ns
Silicon Detectors	10 ns	10 ns / √12
TPC (CLIC_ILD)	Entire train	n/a

19 TeV \rightarrow 1.2 TeV remaining in reconstruction window

Passed to track finding and PFA reconstruction

necessary for development of shower in tungsten

PFA Calorimetry at CLIC

1.2 TeV "extra energy" in reco window

100 GeV "extra energy" after timing cuts

Combination of time and p_{T} cuts

3 sets of cuts defined: loose, default, tight

Jet Finding at CLIC

Durham - style jet finders used in exclusive mode

sensitive to background

Analyses in CDR used k_T algorithm as implemented in FastJet

"Beam Jets" pick up most of the forward boosted background

Flavor Tagging at CLIC

Efficient tagging of b- and c-jets is a crucial component of the Higgs program at a iinear collider Using (basically) the ZVTOP algorithm as implemented by the LCFI collaboration

Background somewhat deteriorates the tagging efficiency

Reconstruction Summary

Intense beams at CLIC pose a challenge for the reconstruction:

19 TeV additionally deposited in the calorimeters

Three ways to reduce impact:

1. Reconstruction time slice:

Identify interesting event offline and remove out-of-time hits

2. Reconstructed particle time:

Compute the time of the particle from the (energy-weighted) average of the calorimeter hits. Remove low- p_{T} , late arriving particles

3. Jet reconstruction:

Beam jets pick up a lot of the forward-boosted background

Physics Studies at CLIC

- Studies have been done with detailed detector simulation
- Background taken into account
- (Standard Model) Higgs Studies
- Studies of Physics Beyond the Standard Model

Higgs Physics at CLIC

 \overline{v}_{e}

 e^+

Higgs Recoil Method

Reconstruct the Z in the di-muon channel

Well-known value for E_{CM} allows to plot the recoil against the Z

No information about the Higgs decay enters this plot \rightarrow sensitivity to invisible decays

Absolute measurement of gauge coupling, limited only by beamstrahlung

$$rac{\mathbf{\Delta g_{\mathrm{HZZ}}}}{\mathbf{g}_{\mathrm{HZZ}}} pprox \mathbf{2\%}$$

only statistical uncertainty quoted

Higgs BR measurements at 3 TeV

GEANT4-based detector simulation studies Realistic simulation of pile-up background achievable measurement uncertainty on $h \rightarrow bb: 0.22\%$ $h \rightarrow mu mu: 15\%$ $h \rightarrow cc: 3.2\%$

tri-linear self-coupling: ~20% (in progress)

Physics Beyond the Standard Model

First stage defined by physics 350 GeV / 500 GeV (Higgs, top)

Later stages guided by future observations

Staging scenario A: Stage 1: 500 GeV Stage 2: 1400 GeV Stage 3: 3000 GeV

Gaugino Pair Production

$${f e^+ e^-} o {\widetilde \chi}^+_1 {\widetilde \chi}^-_1 o {\widetilde \chi}^0_1 {\widetilde \chi}^0_1 {f W^+ W^-}$$

 ${f e^+ e^-} o {\widetilde \chi}^0_2 {\widetilde \chi}^0_2 o {\widetilde \chi}^0_1 {\widetilde \chi}^0_1 {f hh} \ {f e^+ e^-} o {\widetilde \chi}^0_2 {\widetilde \chi}^0_2 o {\widetilde \chi}^0_1 {\widetilde \chi}^0_1 {f Zh}$

Signature: 4 Jets + missing Energy

Separation of heavy bosons based on reconstructed invariant mass

 $\begin{aligned} \sigma(\widetilde{\boldsymbol{\chi}}_{1}^{+}\widetilde{\boldsymbol{\chi}}_{1}^{-}) &= 10.6 \, \text{fb} \pm 0.25 \, \text{fb} \\ \mathbf{m}(\widetilde{\boldsymbol{\chi}}^{\pm}) &= 643.2 \, \text{GeV} \pm 7 \, \text{GeV} \\ \sigma(\widetilde{\boldsymbol{\chi}}_{2}^{0}\widetilde{\boldsymbol{\chi}}_{2}^{0}) &= 3.3 \, \text{fb} \pm 0.11 \, \text{fb} \\ \mathbf{m}(\widetilde{\boldsymbol{\chi}}_{2}^{0}) &= 643.1 \, \text{GeV} \pm 10 \, \text{GeV} \end{aligned}$

only statistical uncertainty quoted

Detailed Detector Simulation including background 3 TeV CLIC

Heavy Higgs Bosons

Test of flavor tagging in boosted jets and reconstruction of high-energy jets

$$\begin{split} \mathbf{m}(\mathbf{H}^+/\mathbf{H}^-) &= 906.3\,{\rm GeV} \pm 2.4\,{\rm GeV} & \hline 1.1\,{\rm fb} \\ \mathbf{m}(\mathbf{A}^0/\mathbf{H}^0) &= 902.4\,{\rm GeV} \pm 2.8\,{\rm GeV} & \hline 0.5\,{\rm fb} \end{split}$$

Sensitivity nearly up to 1/2 \sqrt{s}

only statistical uncertainty quoted

Physics Summary

The CLIC environment at 3 TeV presents a unique opportunity for physics at the TeraScale

Detailed simulation studies show that the impact of the background can be controlled

Excellent detector performance allows precision measurements of heavy objects even at 3 TeV

Hardware R&D

Hadronic Calorimeters Scintillator Plates in W absorber structure Glass RPC in W absorber structure

Vertex Detector Engineering Vertex Detector Pixels

Analog HCAL

CERN SPS 2011

Validation of GEANT 4 models in tungsten stack

Good agreement found

HCAL tests in 2010+2011 10 mm thick **Tungsten absorber** plates scintillator active layers, 3×3 cm² cells

longitudinal shower profile, pions

visible Energy, protons

Digital HCAL

54 glass RPC chambers, 1m² each PAD size 1×1 cm² Digital readout (1 threshold) 100 ns time-slicing Fully integrated electronics Main DHCAL stack (39) + tail catcher (15)

CERN test setup includes fast readout RPC (T3B)

~ 500,000 channels World record for hadronic calorimetry

Inner Tracking Detectors

R&D

Material budget goal: 0.2% X_o per layer

Time stamping: 10 ns

Excellent flavor tagging: small pixels ~25x25 µm²,

small inner radius (2.7 cm)

Radiation level < $10^{11} n_{eq}$ cm⁻²year⁻¹ <= 10^4 lower than LHC

Low-mass Cooling

ANSYS finite element simulation of air-flow cooling: Spiral disk geometry allows for air flow into barrel Sufficient heat removal

- •Except barrel layer 2 (40°C)
- •Conduction not
- taken into account

Mass Flow: 20.1 g/s Average velocity: @ inlet: 11.0 m/s @ z=0: 5.2 m/s @ outlet: 6.3 m/s

Power Delivery

Figure: Half ladder proposed powering scheme

1[cm]

CLICPix demonstrator

Hybrid approach pursued: (<= other options possible)
Thin (~50 μm) silicon sensors (Micron, CNM, VTT)
Thinned High density ASIC in very-deep-sub-micron:
TimePix3, Smallpix <= R&D steps
CLICpix
Low-mass interconnect
Micro-bump-bonding (Cu-pillar option, Advacam)
Through-Silicon-Vias (R&D with CEA-Leti)
Chip-stitching

CLICpix

64×64 pixel demonstrator

•65 nm technology
•25×25 μm² pixels
•4-bit TOA and TOT information
•10 nsec time-slicing
•Power 2 W/cm² (continuous)
With sequential power pulsing 50 mW/cm²

•CLIC CDR (#1), A Multi-TeV Linear Collider based on CLIC Technology, CERN-2012-003, <u>https://edms.cern.ch/document/1234244/</u>

•CLIC CDR (#2), Physics and Detectors at CLIC,

CERN-2012-003, arXiv:1202.5940

•CLIC CDR (#3), The CLIC Programme: towards a staged e+e- Linear Collider exploring the Terascale, CERN-2012-005, <u>http://arxiv.org/abs/1209.2543</u>

Volume 1: Accelerator

N. AC. M. MU Mill Report (MI) PRI CO-M MILLON AND COMMAND AND AND COMMAND AND

ORCANISATION FURDITIONIE POUR LA RECHERCHE NUCLÉARE CERN DUROPEAN ORCANIZATION FOR NUCLÉAR RESEARCH

A MULTI-TEV LINEAR COLLIDER BASED ON CLIC TECHNOLOGY COCOMPTAN INNER REVER

Volume 2: Physics + Detectors

OBCAVEATION FUROPENNE POUR LA RECHERCHE PLUCIÈNE CERN BLROPEAN ORCANIZATION FOR PLUCIÈNE RESEARCH

PHYSICS AND DETECTORS AT CLUC ULE Conservoir Inner

ORGANISATION ILLIGHTENNE POUR LA RECHERCHE NUCLÉARE CERN FUROPOUS ORGANIZATION FOR NUCLEAR REFERENCE

THE CLIC PROGRAMME: TOWARDS A STAGED 4° 4° LINEAR COLLIDER EXPLORING THE TERASCALE OCCOMPTIA DUES BORE

Organisation of CLIC Detector and Physics study

Pre-collaboration structure, based on a "Memorandum on Cooperation" http://lcd.web.cern.ch/LCD/Home/MoC.html

CLIC strategy and objectives

2012-16 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

about next project(s) at the Energy Frontier.

2017-22 Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.

2022-23 Construction Start

Ready for full construction and main tunnel excavation.

2023-2030 Construction Phase

Stage 1 construction of a 500 GeV CLIC, in parallel with detector construction.

Preparation for implementation of further stages.

Faster implementation possible, (e.g. for lower-energy Higgs factory): klystron-based initial stage

Lucie Linssen, CLIC workshop, 28 January 2013

plans for the phase 2013-2016

Further exploration of the physics potential

•Complete picture of Higgs prospects at ~350 GeV, ~1.4 TeV, ~3 TeV

- Discovery reach for BSM physics
- •Sensitivity to BSM through high-precision measurements

Detector Optimisation studies

•Optimisation studies linked to physics (e.g aspect ratio, forward region coverage);

- Interplay between occupancies and reconstruction;
- •Interplay between technology R&D and simulation models.

Technology demonstrators

Many common developments with ILCComplemented with CLIC requirements

Drives the CLIC staging strategy

R&D objectives: 2013-2016

R&D => technology demonstrators

Implementation examples *demonstrating the required functionality*

Vertex detector

Demonstration module, meeting requirements of high precision, 10 ns time stamp and ultra-low mass Main tracker

Demonstration modules, including manageable occupancies in the event reconstruction

Calorimeters

Demonstration modules, technological prototypes + addressing control of cost

Electronics

Demonstrators, in particular in view of power pulsing

Magnet systems

Demonstrators of conductor technology, safety systems and moveable service lines

Engineering and detector integration

Engineering design and detector integration harmonized with hardware R&D demonstrators

Challenging and interesting detector technologies Considered feasible in a 5-year R&D program

summary and outlook

Summary of CLIC detector & physics CDR studies

- •Feasibility of precision physics measurements demonstrated
- •Staged implementation of CLIC => large potential for SM and BSM physics

Good progress with understanding detectors at CLIC

Based on ILD and SiD concepts
Detector requirements now well understood
=> challenging, but feasible through realistic R&D

Development program for the next CLIC phases

Anticipating energy frontier machine choice ~2017
Anticipating start of construction by ~2023

Welcome to join !

lcd.web.cern.ch/lcd/
http://lcd.web.cern.ch/LCD/Home/MoC.html

Backup

Power Pulsing Measurements

Test setup with active loads emulating analog pixel F/E:

Measurement

Equivalent thickness cable+LDO+cap.: 0.145% X0 / layer in vtx region
Power pulsing at 50 Hz
Load current of 2 A (half ladder) during 15 μs
Monitor load voltages and currents
Observed ripple ΔV< 20 mV, acceptable for CLICPix
Agreement between measurement and simulation

Possible luminosity examples

Based on 200 days/year at 50% efficiency (accelerator + data taking combined)

Target figures: >600 fb⁻¹ at first stage, 1.5 ab^{-1} at second stage, 2 ab^{-1} at third stage

Fig. 5.2: Integrated luminosity in the scenarios optimised for luminosity in the first energy stage (left) and optimised for entry costs (right). Years are counted from the start of beam commissioning. These figures include luminosity ramp-up of four years (5%, 25%, 50%, 75%) in the first stage and two years (25%, 50%) in subsequent stages.

Z' Sensitivity Study

CLIC_ILD </ and CLIC_SiD > tracker

PFA calorimetry at CLIC

ECAL

Si or Scint. (active) + Tungsten (absorber) cell sizes 13 mm² or 25 mm² 30 layers in depth

HCAL

Several technology options: **scint. or gas Tungsten (barrel)**, steel (endcap) cell sizes 9 cm² (analog) or 1 cm² (digital) 60-75 layers in depth

Total depth 7.5 Λ_{i}

Higgs Summary

Higgs studies for $m_H = 120 \text{ GeV}$

\sqrt{s} (GeV)	Process	Decay mode	Measured quantity	Unit	Generator value	Stat. error	Comment
			σ	fb	4.9	4.9%	Model
350		$ZH o \mu^+\mu^- X$	Mass	${ m GeV}$	120	0.131	independent, using Z-recoil
	SM Higgs		$\sigma \times \mathbf{BR}$	\mathbf{fb}	34.4	1.6%	$ZH o q\bar{q}q\bar{q}$
500	500 production	poduction $ZH o q\bar{q}q\bar{q}$	Mass	${ m GeV}$	120	0.100	mass reconstruction
500		$ZH, H \nu \bar{\nu}$	$\sigma \times \mathbf{BR}$	\mathbf{fb}	80.7	1.0%	Inclusive
		$ ightarrow u ar{ u} q ar{q}$	Mass	${ m GeV}$	120	0.100	sample
1400		$H \to \tau^+ \tau^-$			19.8	<3.7%	
	\overline{WW}	$H \to b\bar{b}$	$\sigma \times \mathbf{BR}$	\mathbf{fb}	285	0.22%	
3000	fusion	$H ightarrow c \bar{c} \ H ightarrow \mu^+ \mu^-$			$\begin{array}{c} 13\\ 0.12\end{array}$	${f 3.2\%}\ {f 15.7\%}$	
			Higgs				
1400	WW		tri-linear			${\sim}20\%$	
3000	fusion		coupling			$\sim \! 20\%$	
			g_{HHH}				

SUSY Summary

${\sqrt{s}} { m (TeV)}$	Process	Decay mode	SUSY model	Measured quantity	Unit	Gene- rator value	Stat. error
		$\widetilde{\mu}_R^+ \widetilde{\mu}_R^- \to \mu^+ \mu^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$		$egin{array}{c} \sigma \ { ilde \ell} \ {f mass} \ { ilde \chi}_1^0 \ {f mass} \end{array}$	fb GeV GeV	$1.11 \\ 560.8 \\ 357.8$	$2.7\% \\ 0.1\% \\ 0.1\%$
1.4	Sleptons production	$\widetilde{e}^+_R \widetilde{e}^R ightarrow e^+ e^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$	III	$egin{array}{c} \sigma \ \widetilde{\ell} \ {f mass} \ \widetilde{\chi}^0_1 \ {f mass} \end{array}$	${f fb} {f GeV} {f GeV}$	$5.7 \\ 558.1 \\ 357.1$	$1.1\% \\ 0.1\% \\ 0.1\%$
		$\widetilde{ u}_e\widetilde{ u}_e ightarrow \widetilde{\chi}_1^0\widetilde{\chi}_1^0 e^+e^-W^+W^-$		$egin{array}{c} \sigma \ ilde{\ell} \ {f mass} \ ilde{\chi}_1^\pm \ {f mass} \end{array}$	${f fb} {f GeV} {f GeV}$	$5.6 \\ 644.3 \\ 487.6$	$3.6\% \ 2.5\% \ 2.7\%$
1.4	Stau production	$\widetilde{ au}_1^+ \widetilde{ au}_1^- ightarrow au^+ au^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	IIII	$\widetilde{ au}_1 ext{ mass } \sigma$	${f GeV} {f fb}$	517 2.4	2.0% 7.5%
1.4	Chargino production	$\widetilde{\chi}_1^+ \widetilde{\chi}_1^- \to \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^-$	TTT	$\widetilde{\chi}_1^{\pm} \mathbf{mass} \ \sigma$	${f GeV}$ fb	$\begin{array}{c} 487 \\ 15.3 \end{array}$	$0.2\% \\ 1.3\%$
	Neutralino production	$\widetilde{\chi}^0_2 \widetilde{\chi}^0_2 ightarrow h/Z^0 h/Z^0 \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$		$\widetilde{\chi}^0_2 {f mass} \ \sigma$	${f GeV} {f fb}$	487 5.4	$0.1\% \\ 1.2\%$

Results of detailed simulation study for a given SUSY model (model III)

CLIC operated at 1.4 TeV, 1.5 ab⁻¹

Results from earlier stage(s) not taken into account

Susy models I & II

\sqrt{s} (TeV)	Process	Decay mode	SUSY model	${ m Measured}$ quantity	Unit	Gene- rator value	Stat. error
		$\widetilde{\mu}_R^+ \widetilde{\mu}_R^- \to \mu^+ \mu^- \widetilde{\chi}_1^0 \widetilde{\chi_1}^0$		$egin{array}{c} \sigma \ ilde{\ell} \ {f mass} \ ilde{\chi}_1^0 \ {f mass} \end{array}$	$egin{array}{c} { m fb} & \ { m GeV} & \ { m GeV} & \ { m GeV} \end{array}$	$0.72 \\ 1010.8 \\ 340.3$	$2.8\% \ 0.6\% \ 1.9\%$
3.0	Sleptons production	$\widetilde{e}^+_R \widetilde{e}^R \to e^+ e^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$	II	$egin{array}{c} \sigma \ ilde{\ell} \ {f mass} \ ilde{\chi}_1^0 \ {f mass} \end{array}$	$egin{array}{c} { m fb} & \ { m GeV} & \ { m GeV} & \ { m GeV} & \ \end{array}$	$6.05 \\ 1010.8 \\ 340.3$	$0.8\%\ 0.3\%\ 1.0\%$
		$\begin{array}{l} \widetilde{e}_L^+ \widetilde{e}_L^- \to \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 e^+ e^- hh \\ \widetilde{e}_L^+ \widetilde{e}_L^- \to \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 e^+ e^- Z^0 Z^0 \end{array}$		σ	\mathbf{fb}	3.07	7.2%
		$\widetilde{\nu}_e\widetilde{\nu}_e\rightarrow\widetilde{\chi}^0_1\widetilde{\chi}^0_1e^+e^-W^+W^-$		$egin{array}{c} \sigma \ ilde{\ell} \ {f mass} \ ilde{\chi}_1^\pm \ {f mass} \end{array}$	$egin{array}{c} { m fb} & \ { m GeV} & \ { m GeV} & \ { m GeV} \end{array}$	$13.74 \\ 1097.2 \\ 643.2$	$2.4\% \ 0.4\% \ 0.6\%$
	Chargino production	$\widetilde{\chi}_1^+ \widetilde{\chi}_1^- ightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^-$	TT	$\widetilde{\chi}_1^{\pm} \mathbf{mass} \ \sigma$	${f GeV} {f fb}$	$\begin{array}{c} 643.2\\ 10.6\end{array}$	$1.1\% \\ 2.4\%$
0.0	Neutralino production	$\widetilde{\chi}^0_2 \widetilde{\chi}^0_2 ightarrow h/Z^0 h/Z^0 \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$		$\widetilde{\chi}^0_2 {f mass} \ \sigma$	${f GeV} {f fb}$	$\begin{array}{c} 643.1\\ 3.3\end{array}$	$1.5\%\ 3.2\%$
3.0	Production of right-handed squarks	$\widetilde{q}_R \widetilde{q}_R o q \overline{q} \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	I	$\begin{array}{c} \mathbf{Mass} \\ \sigma \end{array}$	${f GeV} {f fb}$	1123.7 1.47	$0.52\% \\ 4.6\%$
3.0	Heavy Higgs	$H^0 A^0 o b ar b b b ar b$	I	Mass Width	$\overline{\mathrm{GeV}}$ GeV	902.4	$0.3\% \\ 31\%$
	production	$H^+H^- \to t \bar{b} b \bar{t}$		Mass Width	${ m GeV} { m GeV}$	906.3	0.3% 27%

PFA Performance w/o background

Detector Costing (no labor)

Table 5.4: Value estimate of the CLIC detectors. CLIC_ILD CLIC_SiD (MCHF) (MCHF) 15 Vertex 13 51 Tracker 17 Electromagnetic calorimeter 197 89 Hadronic calorimeter 14486 Muon system 22 28 123 Coil and yoke 117 Other 11 12 Total (rounded) 560 360

Fig. 5.9: Cost structure of the CLIC detectors.

Vertex Region Layout

	CLIC_ILD	CLIC_SiD		
Central beam pipe	Beryllium			
	$R_i = 29.4 \text{ mm}$	$R_i = 24.5 \text{ mm}$		
	d = 0.6 mm	d = 0.5 mm		
Barrel region	3 double layers	5 single layers		
	z < 130 mm	z < 98.5 mm		
	$R_i = 31, 44, 58 \text{ mm}$	$R_i = 27, 38, 51, 64, 77 \text{ mm}$		
Forward region	3 double layers	7 single layers		
-	z = 160, 207, 255 mm	z = 120, 160, 200, 240,		
		280, 500, 830 mm		
Sensors	20 μm × 2	0 μm, σ _{sp} ≈3 μm		
	$X/X_0 = 0.18\%$	$X/X_0 = 0.11\%$		
	per double layer	per single layer		
Surface area	0.736 m ²	1.103 m ²		
Number of channels	1.84×10^{9}	2.76×10^{9}		

The Silicon Envelope in numbers (current scheme)

Component	Layer #	# modules	# sensors/ module	# channels	Total surface m2
SIT1	1" layer	33	3	66.000	0.9
	2 nd layer	99	1	198.000	0.9
SIT2	1 st layer	90	3	180.000	2.7
	2 nd layer	270	1	540.000	2.7
SET	1 [#] layer	1260	5	2.520.000	55.2
	2 nd layer	1260	5	2.520.000	55.2
ETD_F	X or U or V	82/quad =328/layer =984/ETD	2 or 3 or possibly 4	2.000.000	30
ETD_B	idem	idem	idem	idem	30

Total number of channels: 10^{6} (SIT) + 5x10⁶ (SET) + 4x10⁶ (2 ETD) = 10 x10⁶ channels

Total area:

7 (SIT)+110 (SET) +2x30(ETDs) = 180 m²

Total number of modules:

500 (SIT) + 2500 (SET) + 2000 (ETDs)=

5000 modules with unique size sensors =>Achieved: a unified and simple design

for all components (except FTD)

Taken from: Aurore Savoy-Navarro, talk for Terceras Jornadas sobre la Participación Española en los Futuros Aceleradores Lineales de Partículas - 7 a 8 Mayo, Barcelona

Key Parameters of the CLIC machine

Parameter	Symbol	Unit	500 GeV	3 TeV
Centre-of-mass energy	\sqrt{s}	TeV	0.5	3.0
Repetition frequency	frep	Hz	50	50
Number of bunches per train	n_b		354	312
Bunch separation	Δt	ns	0.5	0.5
Accelerating gradient	G	MV/m	80	100
Total luminosity	\mathscr{L}_{total}	$10^{34} { m cm}^{-2} { m s}^{-1}$	2.3	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1.4	2.0
Number of photons per electron/positron	nγ		1.3	2.1
Average energy loss due to beamstrahlung	$\Delta E/E$		0.07	0.28
Number of coherent pairs per bunch crossing	N_{cob}		2×10^{-2}	6.8×10^{8}
Energy of coherent pairs per bunch crossing	E_{coh}	TeV	15	2.1×10^{8}
Number of incoherent pairs per bunch crossing	n_{incoh}	10 ⁶	0.08	0.3
Energy of incoherent pairs per bunch crossing	E_{incoh}	10 ⁶ GeV	0.36	23
Hadronic events per bunch crossing	n_{had}		0.3	3.2

Background Properties

