

Belle II

Zuzana Gruberová (Charles University in Prague)

-

University of Birmingham Particle Physics Seminar, May 18, 2022

ALL ALL PROPERTY

Outline

- Physics motivation
- B-factories

» Experiment

- SuperKEKB
- Belle II
- » Status and Prospects
 - Luminosity and data taking
 - Selected physics results
- » Summary

Exploring our universe

Big questions >

- origin of particles generations and the role of flavour
- CP violation and matter-antimatter asymmetry -
 - \rightarrow not addressed by the Standard Model \rightarrow we need New Physics

Physics motivation

Exploring our universe

» Big questions

- origin of particles generations and the role of flavor
- CP violation and matter-antimatter asymmetry
 - \rightarrow not addressed by the Standard Model
 - \rightarrow we need New Physics
- » Where to look for NP at colliders?
- direct searches at the Energy Frontier \rightarrow direct production of new particles, limited by the collision energy

 indirect searches at the Intensity Frontier → new virtual particles, even if no new particles are found, the NP effects can still appear in high precision measurements as deviation from SM predictions

Belle II is a leading Flavour Physics experiment at the Intensity Frontier

B-factories

First generation B-factories

- » Asymmetric beam energies
- boosted collision products
- » Collision energy at ↑(4S) resonance 10.6 GeV
- $\sigma(e^+e^-
 ightarrow Bar{B}) = 1.05$ nb
 - ightarrow 50% decays: coherent production of $B^{0}ar{B^{0}}$
- full reconstruction of one of the B's, taging the flavor of the other B

- » Assets of B-factories
- well-defined kinematics of initial state
- high vertex resolution and excellent calorimetry
- sophisticated particle ID

» Belle@KEKB and BaBar@PEP-II

- past B-factory experiments
- high luminosities: 711 fb⁻¹ @Belle, 424 fb⁻¹ @BaBar
- » Wide physics program
- → success culminated in 2008 Nobel prize in Physics
- \rightarrow rich legacy left for next generation experiments

B-factories

Motivation for another e^+e^- flavour factory

- » probing the Standard Model? \rightarrow high precision measurements of CKM matrix element
- » looking for new CP violating phases? \rightarrow study CP violation in B and D decays
- » imprint of new physics in FCNC transitions? → examine radiative and electroweak penguin decays
- » charged Higgs boson? \rightarrow study tree-level decay $B \rightarrow \tau \nu$ or $B \rightarrow D^* \tau \nu$
- » new physics in au sector ightarrow search for lepton flavor violating au decays
- \gg dark matter? \rightarrow search for hidden dark sector, invisible decays
- → Belle II @ SuperKEKB will address these and other questions with almost two orders of magnitude larger dataset than Belle+BABAR

SuperKEKB

@ KEK, Tsukuba, Japan

- » major upgrade of KEKB, first collision in 2018
- 3 km long circular e^+e^- collider + linac
- asymetric beam energies of 7.0 GeV (e^-) and 4.0 GeV (e^+)
- nano-beam focusing, small interaction point, increased currents
- » Design luminosity of $6\times 10^{35} {\rm cm}^{-2} {\rm s}^{-1}$
- \rightarrow higher background
- → higher trigger rates

Belle II

B-factory of the next generation

- » Belle II
- successor of the Belle experiment
- upgraded trigger system \rightarrow allows for the selection of signals that were not possible to trigger at Belle
- excellent tracking efficiency and improved vertex resolution
 - \rightarrow enables for new measurement approaches

Belle II

Luminosity status and plans

» Despite the global pandemic, SuperKEKB managed to set new peak luminosity records in the past year

https://cerncourier.com/a/superkekb-raises-the-bar/

- $\rightarrow~$ luminosity above the B-factories and LHC, with a product of beam currents 3.5 times lower than KEKB
- \rightarrow new record 3.93 \times 10³⁴ cm⁻² s⁻¹ reached just days ago!

- » Operation plans
- long shutdown (LS1) starts from summer 2022 for 15 months to replace the vertex detector (VXD)
- additional improvements are being discussed
- long shutdown for machine improvements could happen on the time frame of 2026-2027

Belle II physics results

Only a small fraction of recent Belle II results will be presented!

... and the selection of the presented analyses is also sligthly biased

- Motivation »
- test of non-perturbative QCD
- large number of charm mesons are produced at B-factories
- no D^{0} , D^{+} lifetime measurement from Belle/BaBar/LHCb
- no Λ_c^+ measurement from Belle/BaBar
- \rightarrow Belle II has better vertex resolution compared to Belle and BaBar thanks to new vertex detectors located at a closer position to the IP

D^0, D^+ and Λ_c^+ lifetime measurements

» Motivation

- test of non-perturbative QCD
- large number of charms are produced at B-factories
- → no measurement from Belle/BaBar/LHCb
- → Belle II has better vertex resolution compared to Belle and BaBar thanks to new vertex detectors located at a closer position to the IP

» Strategy

- 2D fit of decay time and its uncertainty
- all PDF parameters extracted directly from the data without simulation input

PRL 127, 211801

D^0, D^+ and Λ_c^+ lifetime measurements

» Results

- consistent with and the world average
- still statistically limited, dominant syst. uncertainties come from detector alignment and modelling of background (for D^+)
- $\rightarrow\,$ first and most precise measurement in last 20 years
- $\rightarrow\,$ demonstration of Belle II vertexing capabilities compared to its predecessors

Belle II	World average
τ(D ⁰) = (410.5 ± 1.1 ± 0.8) fs	(410.1 ± 1.5) fs
τ(D ⁺) = (1030.4 ± 4.7 ± 3.1) fs	(1040 ± 7) fs
τ(Λ _c +) = (204.1 ± 0.8 ± 0.7 - 1.4) fs	(202.4 ± 3.1) fs

D	$^{0} \rightarrow K^{-}\pi^{+}$	$D^+ \rightarrow K^- \pi^+ \pi$	c+
Source	$\tau(D^0)$ [fs]	$\tau(D^+)$ [fs]	
Resolution model	0.16	0.39	
Backgrounds	0.24	2.52	
Detector alignment	0.72	1.70	
Momentum scale	0.19	0.48	
Total	0.80	3.10	

- +	× *	n	к-	- m
· · ·	_	U.	•	- 74
6				

Source	Uncertainty [fs]
Resolution model	0.46
Backgrounds	0.20
Detector alignment	0.46
Momentum scale	0.09
Ξ_c contamination	1.39
Total	$0.69_{-1.39}$

1995 2000 2005 2010 2015 2020

systematic uncertainties

B⁰ lifetime and mixing frequency

» Goal

- one of the main targets of Belle II mixing-induced CP asymmetry
- B^0 and $\bar{B^0}$ decay to a common CP eigenstate f_{CP}
- CP violation appears as a decay time difference

$$\begin{split} \mathsf{A}_{\mathsf{CP}}(\Delta t) &= \frac{\Gamma(\overline{\mathsf{B}}^{0}(\Delta t) \to \mathsf{f}_{\mathsf{CP}}) - \Gamma(\mathsf{B}^{0}(\Delta t) \to \mathsf{f}_{\mathsf{CP}})}{\Gamma(\overline{\mathsf{B}}^{0}(\Delta t) \to \mathsf{f}_{\mathsf{CP}}) + \Gamma(\mathsf{B}^{0}(\Delta t) \to \mathsf{f}_{\mathsf{CP}})} \\ &= S \, \sin(\Delta m \Delta t) + \mathsf{A} \cos(\Delta m \Delta t) \\ \mathsf{S} &= -\xi \, \sin(2\phi_{1}) \text{ for } \mathsf{B} \to \mathsf{J}/\psi \, \mathsf{K}_{\mathsf{S}} \qquad (\phi_{1} = \beta) \end{split}$$

S - mixing induced CPV, A - direct CPV

» Current analysis

- measuring decays to final state $D^{(*)-}K^+/\pi^+$ (instead of fcp)
 - \rightarrow fully reconstructed hadronic decay vertex
- ightarrow measurement of mixing frequency (Δm) and lifetime

 $\beta \gamma \approx 0.27$

ightarrow mean vertex separation $\Delta m{z}\,pprox\,$ 130 $m\mu\,m$

B⁰ lifetime and mixing frequency

» Results

$$\begin{split} \tau_{B^0} &= 1.499 \pm 0.013 \, (\text{stat.}) \pm 0.008 \, (\text{syst.}) \, \text{ps}, \\ \Delta \textit{m}_d &= 0.516 \pm 0.008 \, (\text{stat.}) \pm 0.005 \, (\text{syst.}) \, \text{ps}^{-1} \end{split}$$

- similar uncertainty as Belle and BaBar
- » Next steps
- include semileptonic mode $D^*\ell
 u$
- measure $sin(2\phi_1)$ (= $sin(2\beta)$)

- » ϕ_3 (γ) is a weak phase between $b \rightarrow u$ and $b \rightarrow c$ transition
- proceeding only through tree-level $B^- \rightarrow D^0 K^-$ decays
- SM benchmark, no theory uncertainties
- the phase can be accesed through the interference between two possible paths to the common final state
- interference depends on B and D physics

$$\frac{\mathcal{A}^{\mathrm{suppr.}}(B^- \to \overline{D^0} K^-)}{\mathcal{A}^{\mathrm{favor.}}(B^- \to D^0 K^-)} = r_B e^{i(\delta_B + \phi_3)}$$

ĸ

16

Measurement of ϕ_3

- m^{2}_{s} (K^{0}_{s}\pi) [GeV^{2}/c^{4}] Bin number 0.5 1 1.5 2 2.5 $m_{+}^{2} (K_{c}^{0} \pi^{+}) [GeV^{2}/c^{4}]$ m² (K⁰K⁻) [GeV²/c⁴] 1 7 8 9 1 8 9 8 1 8 1 1 Bin number 1.2 1.4 1.6 1.8 $m_{+}^{2} (K_{s}^{0}K^{+}) [GeV^{2}/c^{4}]$
- » $\phi_{\mathbf{3}}$ (γ) is a weak phase between b
 ightarrow u and b
 ightarrow c transition
- proceeding only through tree-level $B^-
 ightarrow D^{m 0} K^-$ decays
- SM benchmark, no theory uncertainties
- the phase can be accesed through the interference between two possible paths to the common final state
- interference depends on B and D physics
- » Analytical approach
- experimentally challenging due to small branching fractions
- → Binned Dalitz plot analysis using $B^- \rightarrow D^0 h^-$ with $D^0 \rightarrow K_S^0 h^+ h^-$ (GGSZ method [PRD 68. 054018 (2003)])
- ightarrow this method is model-independent

$$\begin{split} \mathbf{N}_{i}^{\pm} &= \mathbf{h}_{\mathrm{B}}^{\pm} \left[\mathbf{F}_{i} + \mathbf{r}_{\mathrm{B}}^{2} \overline{\mathbf{F}}_{i} + 2 \sqrt{\mathbf{F}_{i} \overline{\mathbf{F}}_{i}} (\mathbf{C}_{i} x_{\pm} + \mathbf{s}_{i} y_{\pm}) \right] \\ & (x_{\pm}, y_{\pm}) = \mathbf{r}_{\mathrm{B}} \left(\cos(\mathbf{\gamma} + \delta_{\mathrm{B}}), \sin(\mathbf{\gamma} + \delta_{\mathrm{B}}) \right) \\ & \mathbf{c}_{i}, s_{i}: D^{o} \overline{D^{o}} \text{ strong phase differences} \\ & (\text{inputs from BES III/CLEO}) \\ & \mathbf{F}_{i}: \text{ fraction of } D \text{ decays to } i\text{-th bin} \end{split}$$

Measurement of ϕ_3

» combined Belle (711 fb⁻¹) and Belle II (128 fb⁻¹) analysis [JHEP 02 (2022) 063]

Measurement of ϕ_3

- » Many improvements with respect to the previous result from Belle
- use of $D(K_s^0 K^- K^+)$ channel
- improved suppression of continuum background
 - \rightarrow improvevent equivalent to doubling the statistics
- reduction of systematics thanks to latest inputs on strong phase from BESIII
- fractions F_i obtained directly from simultaneous fit to data (LHCb strategy)
- expected reduction of statistical uncertainty to $< 3^{\circ}$ with 10 ab⁻¹ and using more D final states (but still will be statistically dominated)

Dark Higgsstrahlung

- » Next-to-minimal dark photon model
- dark photon (A') couples to the SM photon via kinetic mixing parameter ϵ
- A' mass can be generated via spontaneous symmetry breaking mechanism

```
\rightarrow a dark Higgs boson (h') is added to the theory [PRD 79, 115008 (2009)]
```

- h' does not mix with the SM Higgs
- both particles A' and h' can be produced via dark Higgsstrahlung process
- » Mass hierarchy scenarios
- $m_{h'} > m_{A'}$: $h' \to A'A' \to 4\ell$, 4had, $2\ell'$ + 2had \Rightarrow 6 charged tracks Investigated by <u>BaBar (2012)</u> and <u>Belle (2015)</u>.
- $m_{h'} < m_{A'}$: h' is long-lived and thus invisible \Rightarrow 2 charged tracks Partially constrained by <u>KLOE (2015)</u>.
- → exploring unconstrained territories at Belle II

Dark Higgsstrahlung

- New result from Belle II >> Belle II $\int \mathcal{L} dt = 8.34 \, \text{fb}^{-1}$ $M_{\rm br} = 1 \, {\rm GeV/c^2}$ using 8.34 fb^{-1} 90% CL UL $M_{\rm br} = 2 \, {\rm GeV/c^2}$ Cross section [fb] $M_{\rm H} = 3 \, {\rm GeV}/c^2$ upper limits are set on σ 10² $-M_{h'} = 4 \,\text{GeV}/c^2$ [paper in preparation] and $\epsilon^2 \alpha n$ covered region of masses Belle II 90% CL UL 10¹ $1.65 < M_{{f A}'} < 10.51~{
 m GeV}$ $5 \int \mathcal{L} dt = 8.34 \, \text{fb}^{-1}$ and $M_{h'} < M_{\Delta'}$ Cross section [fb] M_h' [GeV/c²] \rightarrow 90% CL UL on σ ranges 102 100 from 17 to 5 fb M_{A'} [GeV/c²] 104 101 Belle II $\int \mathcal{L} dt = 8.34 \, \text{fb}^{-1}$ $M_{A'} = 2 \text{ GeV/c}^2$ > Sensitivity $M_{A'} = 4 \, \text{GeV}/c^2$ 90% CL UL Cross section [fb] $M_{A'} = 6 \, \text{GeV}/c^2$ $4 < M_{A'} < 9.7 \text{ GeV}$ $M_{A'} = 8 \, \text{GeV}/c^2$ 10 the most sensitive region MAI [GeV/c²] - $M_{A'}$ < 4 GeV low sesitivity due to trigger efficiency $M_{A\prime} > 9 \text{ GeV}$ 100 large dimuon background $M_{h'}$ [GeV/c²]
- → unique results in previously unexplored regions

The au mass measurement

 $(h \leftrightarrow 3\pi)$

» Lepton masses are fundamental parameters of the SM

 $m_{e} = (0.5109989461 \pm 0.000000031)$ MeV $m_{\mu} = (105.6583745 \pm 0.0000024)$ MeV

 $m_{ au} = (1776.86 \pm 0.12) \text{ MeV}$

- ightarrow the $m_{ au}$ precision impacts LFU tests!
- » Pseudomass measurement at Belle II
- method developed by ARGUS collaboration
- measured in $au
 ightarrow 3\pi
 u$ decay channel
- au mass can be calculated as

$$m_{\tau}^{2} = (P_{h} + P_{\nu})^{2} =$$

= $2E_{h}(E_{\tau} - E_{h}) + m_{h}^{2} - 2|\vec{p_{h}}|(E_{\tau} - E_{h})\cos(\vec{p_{h}}, \vec{p_{\nu}})$

- since the direction of the neutrino is unknown, $\cos(\vec{p_h}, \vec{p_\nu}) = 1$ is taken and M_{min} is defined as

$$M^2_{min} = 2E_h(E_{\tau} - E_h) + m^2_h - 2|\vec{p_h}|(E_{\tau} - E_h) < m^2_{\tau}$$

- the M_{\min} distribution is then fitted to an empirical edge function, and the position of the cutoff indicates the value of the τ mass

» Challenges of the measurement

- find the most accurate empirical fitting function
- properly evaluate the estimator bias

Belle II measurement from 2020

arXiv:2008.04665

The au mass measurement

- » The goal is to achieve best precision among pseudomass measurements
- best measurement from pseudomass technique by Belle
- world-leading result by BES III using a different method (measurement in the production threshold)
- » Belle II measurement from 2020
- statistically dominated and in agreement with the world average
 → we will match the statistical precision of Belle/BaBar with 300 fb⁻¹
- systematic uncertainty at the level of Belle
 → we expect significant reduction in the main systematic uncertainties and further improvements of reconstruction efficiency

Tau mass poster (TAU2021)

The au lifetime measurement

» Important SM parameter

- its precision affects LFU measurements, $lpha_{s}(m_{ au})$, etc.

» World-leading measurement by Belle

- uses a 3 \times 3 topology, with both tau leptons decaying to $3\pi\nu$

 $au_{ au} = 290.17 \pm 0.53 ({
m st\,at}) \pm 0.33 ({
m syst})$ fs

- » Belle II approach
- 1. reconstruct vertex for 3-prong au
- only one 3-prong au
 ightarrow higher statistics
- 2. estimate the au momentum
- hadronic decays in both sides
- 3. find the production vertex
- intersection of au momentum with the plane IPy
- → possible due to the tiny beamspot size at the IP at Belle II
- » Greatest challenge of this method
- the τ momentum estimation and reconstruction of the production vertex

The au lifetime measurement

» Belle II MC measurement

 $au_{ au} = 287.2 \pm 0.5 (\mathrm{stat})$ fs

- → competitive statistical precision was reached already with 200 fb⁻¹ (compared to 711 fb⁻¹ used at Belle)

- » The measured lifetime presents \simeq 3 fs bias (generated value: 290.57 fs)
- ISR/FSR losses ightarrow underestimation of the proper time
- an intrinsic bias in the measurement
- » Further studies to estimate systematics
- test dependence on the resolution function in the fit
- beam-spot position
- ISR/FSR simulation
- vertex detector alignment (dominant systematic uncertainty at Belle)

Lepton flavour universality in au decays

- » Three lepton generations: e, μ, τ
- different masses
- different and separately conserved lepton numbers
- the coupling of leptons to W bosons is flavour-independent, $g_{m{e}}=g_{\mu}=g_{ au}$
- \rightarrow This is the SM picture of leptons, however various experimental results presented in the past years suggest LFU violation!
- » Anomalies in quark sector
- $R(D) R(D^*)$ plane (3.1 σ),
- R(K) (3.1 σ), also $P'_{m{5}}$ in $B o K^* \mu^+ \mu^-$ (3.4 σ)
- and more..!
- » Significant tensions in lepton sector
- anomalous magnetic moment of μ (4.5 σ) and e (2.5 σ)

- » LFU tests with au decays
- $e \mu$ universality

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau}^{2} \propto \frac{BR(\tau^{-} \rightarrow \mu^{-} \bar{\nu_{\mu}} \nu_{\tau})}{BR(\tau^{-} \rightarrow e^{-} \bar{\nu_{e}} \nu_{\tau})}$$

- $au - \mu$ universality

$$\left(rac{\mathbf{g}_{ au}}{\mathbf{g}_{\mu}}
ight)_{\mathbf{h}}^{\mathbf{2}} \propto rac{\mathbf{BR}(au
ightarrow \mathbf{h}
u_{ au})}{\mathbf{BR}(\mathbf{h}
ightarrow \mu
u_{ au})}$$

» Most precise measurements (BaBar)

$$\left(rac{g_{\mu}}{g_{e}}
ight)_{ au}=1.0036\pm0.0020$$

 \rightarrow in agreement with the SM

$$\left(rac{m{g}_{ au}}{m{s}_{\mu}}
ight)_{m{h}}=0.9850\pm0.0054$$

ightarrow 2.8 σ below the SM prediction

PRL 105:051602 (2010)

Lepton flavour universality in au decays

» Use 3×1-prong and 1×1-prong au-pair events

BELLE2-NOTE-PL-2021-009

- $4 \times$ higher efficiency with better purity compared to BaBar for 3×1

- 1×1 not used at BaBar but possible at Belle II thanks to the trigger performance
- better performance for $e \mu$ and very close for $\mu \mu$ compared to CLEO

Belle II and CLEO performance for 1×1

- Main challenges of the analysis
- select signal with the highest possible purity
 → testing different lepton ID approaches
 - (BDT-, likelihood-based)
 - \rightarrow employing MVA techniques (NN, BDT)
- reduce the LID systematic uncertainty
 → main systematics source at BaBar

B ightarrow charm, weak phases, forbidden decays, dark sector...

» $B \to X_c \ell \nu$ [paper in preparation]

- new measurement of the inclusive $B o X_{
 m c} \ell
 u$ with tagged method at Belle II
- novel idea: reduction of HQE parameters (13 \rightarrow 8) by reparametrization \rightarrow [arXiv:1812.00747]

» ϕ_2 [arXiv:2107.02373]

- unique capability of Belle II to study all the $B \to \pi \pi, \rho \rho$ decays to determine phase ϕ_2 (α)
- 20% precision improvement with respect to Belle at the same luminosity

» $B^+ \rightarrow K^+ \nu \bar{\nu}$ [ar Xiv:2104.12624]

- probing of a FCNC decay
- novel inclusive tagging technique at Belle II \rightarrow signal efficiency 4.3% (compared to at best 0.2% efficiency of the previous measurements by Belle and BaBar)

» Dark sector studies

- $e^+e^- \rightarrow \mu^+\mu^- Z', Z' \rightarrow \text{invisible (0.28 fb}^{-1}) \rightarrow [\text{PRL124 (2020), 141801}]$
- Axion-like Particle (ALP) search in $e^+e^- \rightarrow a(\rightarrow \gamma\gamma)\gamma$ (0.44 fb⁻¹) \rightarrow [PRL125 (2020), 161806]
- » $A_{CP}(B^0 o K^0_{S} \pi^0), B^+ o
 ho^+
 ho^-$ angular analysis
- » electroweak penguin B decays $B o K^* \ell^+ \ell^-$
- » hadron spectroscopy (Belle II took energy scan data above $\Upsilon(4S)$ in 2021)

...and more analyses published and in progress!

Summary

- » Belle II is a B-factory of the next generation
- setting peak luminosity records thanks to nano-beam scheme
- opening new possibilities for measurements thanks to upgraded trigger, vertex resolution and tracking efficiency
- \rightarrow since its first collision in 2018, Belle II has collected almost 400 fb⁻¹ of data
- » Belle II contributes to wide range of physics topics
- D^0 , D^+ and Λ_c^+ lifetime measurements
- **B⁰** lifetime and mixing frequency
- measurement of $\phi_{\mathbf{3}}$
- dark Higgsstrahlung
- the au mass measurement
- the au lifetime measurement
- lepton flavour universality in au decays
- and various other topics

Stay tuned for more exciting results!

Thank you for your attention