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● Neutrino Oscillations
– An identity-changing game – Underlying math – Seeing is believing

● Oscillation Measurements
– Accelerator-based neutrino experiments – #measured  / #produced 

– Beam flux,  and  interactions 
–  and  interactions – Impact of  and  interactions

● Interaction Measurements
– MINERvA 

– Inclusive 'low-recoil' analysis – Inclusive to exclusive
●   Exclusive Measurements

– Why particle spectra won't work
●   Transverse Kinematic Imbalance (TKI) 

– Principle – Analysis – Future experiments – The very idea 
– Initial-state kinematics – Neutron initial-state kinematics – Proton 
initial-state kinematics

● Neutrino-Hydrogen Interactions
– Review – The very idea – Perspective

Outline

Xianguo Lu, Oxford

Neutrino Interactions in the GeV Regime
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Physics Beyond Standard Model
via

Neutrino Oscillations

Massless

Neutrinos have mass
Xianguo Lu, Oxford

Cartoon by Marco Del Tutto
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Neutrino Oscillations
– An identity-changing game

https://www.lego.com

Superbat

Xianguo Lu, Oxford
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Xianguo Lu, Oxford

Neutrino Oscillations
– An identity-changing game
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Only 2 flavors, same oscillation behavior 
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oscillation between flavor states as 
a function of time ~distance/energy 

Xianguo Lu, Oxford

Neutrino Oscillations
– An identity-changing game
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*3-flavor paradigm

oscillation between flavor states as 
a function of time ~distance/energy 

Xianguo Lu, Oxford

Neutrino Oscillations
– An identity-changing game
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Super-flashy-bat Anti-super-flashat

Xianguo Lu, Oxford https://www.lego.com

Neutrino Oscillations
– An identity-changing game
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Oscillation property difference 
→ CP-Symmetry violation (CP violation)

Super-flashy-bat Anti-super-flashat

Xianguo Lu, Oxford

Neutrino Oscillations
– An identity-changing game
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Neutrino oscillations depend on mixing parameters and mass differences.  

Xianguo Lu, Oxford

PMNS matrix
Pontecorvo–Maki–Nakagawa–Sakata

● What is the absolute neutrino mass?

● Why is this mass so small?

● How is the different mass ordered?

● Are there more than 3 types of neutrino?

Neutrino Oscillations
– Underlying math



11

PMNS matrix

Xianguo Lu, Oxford

Neutrino oscillations depend on mixing parameters and mass differences.  

Neutrino Oscillations
– Underlying math


13 

0 → 
CP

 can be observed
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PMNS matrix

With a 

 beam

PMNS matrix

* neglecting matter effects

Xianguo Lu, Oxford

Neutrino oscillations depend on mixing parameters and mass differences.  

Neutrino Oscillations
– Underlying math

CP-odd term


13 

0 → 
CP

 can be observed
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PMNS matrix

With a 

 beam

PMNS matrix

by CPT symmetry

flip sign

* neglecting matter effects

Xianguo Lu, Oxford

Neutrino oscillations depend on mixing parameters and mass differences.  

Neutrino Oscillations
– Underlying math


CP

→CP violation 


13 

0 → 
CP

 can be observed
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– Charge–Parity symmetry Violation (CPV)?

Matter   Antimatter 

Xianguo Lu, Oxford

Neutrino Oscillations 
– Seeing is believing
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

 → 

e



 → 

e== 
CPV

Xianguo Lu, Oxford

 
– Charge–Parity symmetry Violation (CPV)?

Neutrino Oscillations 
– Seeing is believing
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No CPV

Xianguo Lu, Oxford

CPV

http://www-pnp.physics.ox.ac.uk/~luxi/transport/visual/visos/vacuumnumuantinumu_cpoff.mov http://www-pnp.physics.ox.ac.uk/~luxi/transport/visual/visos/vacuumnumuantinumu_cpon.mov

Neutrino Oscillations 
– Seeing is believing

Time trajectory in probability space

http://www-pnp.physics.ox.ac.uk/~luxi/transport/visual/visos/vacuumnumuantinumu_cpoff.mov
http://www-pnp.physics.ox.ac.uk/~luxi/transport/visual/visos/vacuumnumuantinumu_cpon.mov
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By Inductiveload
https://lbnf.fnal.gov/beam.html 

Nuclear  decay
MeV regime

  beam: “ decay” of highly boosted collision products
GeV regime

Xianguo Lu, Oxford

* also the cross section is larger at GeV

Oscillation Measurements
– Accelerator-based neutrino experiments

https://lbnf.fnal.gov/beam.html
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DUNE (from 2026)
 and  beams

Xianguo Lu, Oxford

Oscillation Measurements
– Accelerator-based neutrino experiments

T2K
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DUNE (from 2026)

# measured  and : energy, event count 
# produced and : beam flux, interaction rate

Xianguo Lu, Oxford

Oscillation Measurements
– #measured / #produced 

T2K
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DUNE (from 2026)

Oscillation Measurements
– Beam flux, and  interactions

Near Detectors
@280m

Xianguo Lu, Oxford

T2K
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DUNE (from 2026)

Near Detectors
@280m

● Now@T2K: 
[flux (9%) + interaction (15%)] → 8% after Near Detector constraint

● Target CP violation sensitivity requires total sys. uncertainty < 1-2%
● Neutrino interactions, if not understood, would be fatal

Xianguo Lu, Oxford

Oscillation Measurements
– Beam flux, and  interactions

T2K



22

Oscillation Measurements
– and  interactions

+-

neutrino antineutrino

Intrinsic difference in and event rates without CPV

proton neutron

Xianguo Lu, Oxford

Cartoon by Marco Del Tutto
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+

proton

proton neutron

neutron

Nuclear effects like “2p2h” make it worse
Nuclear effects: all effects due to target A>1
Proton and neutron have VERY different experimental signatures

neutrino antineutrino

Xianguo Lu, Oxford

Cartoon by Marco Del Tutto

Oscillation Measurements
– and  interactions
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more complicated interactionshigher event rates

H

He

C

O

Ar

T2K 
Near Detector

(CH)

T2K 
Far Detector

(H
2
O)

DUNE

Simplest interaction

Xianguo Lu, Oxford

Oscillation Measurements
– and  interactions



25

Difference in 
mass states

Mock measurement with
perfect knowledge of interactions

arXiv:1801.09643
Xianguo Lu, Oxford

Mixing between 
 and  flavors

Coloma, Huber, Phys.Rev.Lett. 111 (2013), 221802

Oscillation Measurements
– Impact of and  interactions



26

Difference in 
mass states

arXiv:1801.09643
Xianguo Lu, Oxford

Coloma, Huber, Phys.Rev.Lett. 111 (2013), 221802

Oscillation Measurements
– Impact of and  interactions

Mock measurement
ignoring nuclear effects of interactions

Mixing between 
 and  flavors
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Only dedicated experiment for 
and  interactions
currently running

Various targets: He, CH, O, Fe, Pb

Interaction Measurements
– MINERvA
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Nucl.Instrum.Meth. 676 (2012) 44-49, Nucl.Instrum.Meth. A743 (2014) 130-159

Scintillator tracker:
Hydrocarbon (CH) target
Homogeneous non-magnetized active trackerXianguo Lu, Oxford

Interaction Measurements
– MINERvA
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Energy

Interaction Measurements
– MINERvA

Xianguo Lu, Oxford
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 Formaggio, Zeller, Rev.Mod.Phys. 84 (2012) 1307-1341

NuMI low energy 
beam <E


> ~ 3 GeV

L. Fields

Xianguo Lu, Oxford
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Homogeneous non-magnetized active tracker
→ same as LAr detector
What do we do with such great detail in final states?
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Nucl.Instrum.Meth. 676 (2012) 44-49, Nucl.Instrum.Meth. A743 (2014) 130-159

Xianguo Lu, Oxford

Scintillator Active Tracker

 /  beam 

Interaction Measurements
– Inclusive 'low-recoil' analysis
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Nucl.Instrum.Meth. 676 (2012) 44-49, Nucl.Instrum.Meth. A743 (2014) 130-159

Xianguo Lu, Oxford

~ single proton kinetic energy spectrum in QE
~ (+p) kinetic energy spectrum in RES

Interaction Measurements
– Inclusive 'low-recoil' analysis
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 

[MINERvA, Phys.Rev.Lett. 116 (2016) 071802] [MINERvA, Phys.Rev.Lett. 120 (2018) 221805]

Xianguo Lu, Oxford

Base Model (GENIE + pion reweight + RPA + 2p2h)
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Tune is fit to neutrino data only



Base Model + Neutrino Tune = MnvGENIE-v1

fit

● Neutrino tune 
Tuned 2p2h = (1+G)·Valencia 2p2h, 
G: 2D Gaussian(q0, q3) determined in fit to neutrino data

● Empirical modification to 2p2h
Xianguo Lu, Oxford

[MINERvA, Phys.Rev.Lett. 116 (2016) 071802]
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Tune is fit to neutrino data only

 

Base Model + Neutrino Tune = MnvGENIE-v1

fit

Prediction

Tuned model predicts  data well

● Apply neutrino tune directly to anti-neutrino
Tuned 2p2h = (1+G)·Valencia 2p2h, 
G: 2D Gaussian(q0, q3) determined in fit to neutrino data

● Empirical modification to 2p2h
Xianguo Lu, Oxford

[MINERvA, Phys.Rev.Lett. 120 (2018) 221805][MINERvA, Phys.Rev.Lett. 116 (2016) 071802]
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 inclusive measurements
→ 2p2h tune

Xianguo Lu, Oxford

 inclusive measurements

 quasi-elastic-like interactions

 quasi-elastic-like interactions

– 

Proton above 
tracking threshold

Proton below 
tracking threshold

[MINERvA, Phys.Rev. D99, 012004 (2019)] 

Interaction Measurements
– Inclusive to exclusive

[MINERvA, Phys.Rev.Lett. 121, 022504 (2018)] 

Not to cover in this talk
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Xianguo Lu, Oxford

Problematic “lasagna” region:

Resonance production with pion absorped in nucleus
Proton gain & lose energy in nucleus

True quasi-elastic

2p2h

Why can't we tell what is wrong?
➢ Without nuclear effects, spectra 

still depend on 
● flux
● nucleon-level physics 

Proton polar angle (degree)

MINERvA
PRL, 121, 022504 
(2018) 

Exclusive Measurements
– Why particle spectra won't work
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Xianguo Lu, Oxford

Problematic “lasagna” region:

Resonance production with pion absorped in nucleus
Proton gain & lose energy in nucleus

True quasi-elastic

2p2h

Proton polar angle (degree)

Nuclear effects

Flux
Nucleon-level 

physics

Exclusive Measurements
– Why particle spectra won't work

MINERvA
PRL, 121, 022504 
(2018) 
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Transverse Kinematic 
Imbalance (TKI) 
– Principle

Neutrino Shadow Play

http://www.spoon-tamago.com/2015/08/03/illusionistic-shadow-art-by-shigeo-fukuda/

Xianguo Lu, Oxford

http://www.spoon-tamago.com/2015/08/03/illusionistic-shadow-art-by-shigeo-fukuda/
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Neutrino Shadow Play

http://www.spoon-tamago.com/2015/08/03/illusionistic-shadow-art-by-shigeo-fukuda/

Xianguo Lu, Oxford

Transverse Kinematic 
Imbalance (TKI) 
– Principle

http://www.spoon-tamago.com/2015/08/03/illusionistic-shadow-art-by-shigeo-fukuda/
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http://www.spoon-tamago.com/2015/08/03/illusionistic-shadow-art-by-shigeo-fukuda/

Transverse Kinematic 
Imbalance (TKI) 
– Principle
 
Details can be found in: 
➢ XL et al. Phys.Rev. D92, 051302 (2015)
➢ XL et al. Phys. Rev. C94 015503 (2016)
➢ XL, J. T. Sobczyk, arXiv:1901.06411

Single-TKI:
Interaction diagnostics

Double-TKI:
Select no-nuclear-effect events
-H out of -C

H

H
H

HC

Neutrino Shadow Play

Xianguo Lu, Oxford

http://www.spoon-tamago.com/2015/08/03/illusionistic-shadow-art-by-shigeo-fukuda/
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Transverse Kinematic Imbalance (TKI)
– Analysis

Experimental measurements on single-TKI:
➢ T2K: K. Abe et al. Phys.Rev. D98, 032003 (2018)
➢ MINERvA: XL et al. Phys.Rev.Lett. 121, 022504 (2018) 

Xianguo Lu, Oxford
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Double-TKI: Select -H events

arXiv:1901.03750

-C

-H

Single-TKI: Interaction diagnostics

Transverse Kinematic 
Imbalance (TKI) 
– Future experiments

Current T2K & MINERvA

Xianguo Lu, Oxford

T2K Upgrade Technical Design Report

arXiv:1901.03750
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Transverse Kinematic Imbalance (TKI)
– The very idea 
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Transverse Kinematic Imbalance (TKI)
– The very idea 
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Transverse Kinematic Imbalance (TKI)
– The very idea 
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Stationary nucleon target

Transverse Kinematic Imbalance (TKI)
– The very idea 
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Stationary nucleon target

Xianguo Lu, Oxford

Still back-to-back after changing:
● Flux
● Nucleon structure (form factors)
● Feynman diagram

Transverse Kinematic Imbalance (TKI)
– The very idea 



50

Nuclear target
(A>1)

Xianguo Lu, Oxford

Imbalances NOT due to
● Flux
● Nucleon structure (form factors)
● Feynman diagram
But
● Fermi motion 
● Final-state interaction (FSI)
● 2p2h

Transverse Kinematic Imbalance (TKI)
– The very idea 
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Nuclear target
(A>1)

Xianguo Lu, Oxford

Stationary nucleon target

● Fermi motion
● final-state interaction (FSI)
● 2p2h

Transverse Kinematic 
Imbalance (TKI)
– The very idea 
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Nuclear target
(A>1)

Xianguo Lu, Oxford

● Fermi motion
● final-state interaction (FSI)
● 2p2h

Transverse Kinematic 
Imbalance (TKI)
– The very idea 

     Dijet imbalance / 
Jet quenching
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-

W+/-                      neutron/proton

W-boson flux Fermi motion

The initial-state kinematics of the interaction depend on:
1. Fermi motion of struck nucleon (static)
2. Coupling of W+/- to neutron/proton – Fermi-motion dependent weighting (dynamic)

1. → could be determined by electron scattering (target specific)
2. → needs neutrinos

→ How to measure initial state in situ in neutrino scattering?

Xianguo Lu, Oxford

Cartoon by Marco Del Tutto

W

Transverse Kinematic Imbalance (TKI)
– Initial-state kinematics 

In the center-of-mass frame
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p
T
 is Fermi motion transverse projection

Fermi motion only

Xianguo Lu, Oxford

Transverse Kinematic Imbalance (TKI)
– Initial-state kinematics
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T2K Phys. Rev. D 98, 032003 (2018)

Transverse projection of Fermi motion

Xianguo Lu, Oxford

muon

N' = proton

Initial nucleon 
= neutron

Single-TKI

Transverse Kinematic Imbalance (TKI)
– Initial-state kinematics
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Transverse projection of Fermi motion

T2K Phys. Rev. D 98, 032003 (2018)

Xianguo Lu, Oxford

We only start to learn about Fermi motion in neutrino interactions...

N' = proton

muon

Initial nucleon 
= neutron

Single-TKI

Transverse Kinematic Imbalance (TKI)
– Initial-state kinematics
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N' = proton

Initial nucleon = neutron 
only for  scattering

Stationary nucleon target

Still back-to-back after changing:
● Flux
● Nucleon structure (form factors)
● Feynman diagram

Transverse Kinematic 
Imbalance (TKI)
– Neutron initial-state kinematics



58Xianguo Lu, Oxford

Still back-to-back after changing:
● Flux
● Nucleon structure (form factors)
● Feynman diagram: Large uncertainty

N' = p++/-

Stationary nucleon target

Initial nucleon = proton 
for both  and  scattering

Phys. Rev. D 97, 013002 (2018)

Transverse Kinematic 
Imbalance (TKI)
– Proton initial-state kinematics
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neutrino antineutrino

● Neutron Fermi motion can be probed by QE, but only in neutrino scattering
● Proton Fermi motion in RES with both neutrino and antineutrino → direct comparison 

of dynamic aspect of initial state, to remove possible confusion with CPV!

Quasi-elastic Quasi-elastic

Resonant production Resonant production

Transverse Kinematic Imbalance (TKI)
– Proton initial-state kinematics
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arXiv:1901.06411 arXiv:1901.06411

Proton Fermi motion seen by  Proton Fermi motion seen by 

GiBUU and NuWro have very different predictions for MINERvA
Also very different Fermi motion peaks in  and 

Measurements on-going...Stay tuned!

Xianguo Lu, Oxford

State-of-the-art neutrino interaction event generators: GiBUU and NuWro
p

N
: 3D generalization of p

T 
[Furmanski, Sobczyk, Phys.Rev. C95 (2017) 065501]
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● Neutrino Oscillations
– An identity-changing game – Underlying math – Seeing is believing

● Oscillation Measurements
– Accelerator-based neutrino experiments – #measured  / #produced 

– Beam flux,  and  interactions 
–  and  interactions – Impact of  and  interactions

● Interaction Measurements
– MINERvA 

– Inclusive 'low-recoil' analysis – Inclusive to exclusive
●   Exclusive Measurements

– Why particle spectra won't work
●   Transverse Kinematic Imbalance (TKI) 

– Principle – Analysis – Future experiments – The very idea 
– Initial-state kinematics – Neutron initial-state kinematics – Proton 
initial-state kinematics

● Neutrino-Hydrogen Interactions
– Review – The very idea – Perspective

Outline

Xianguo Lu, Oxford

Neutrino Interactions in the GeV Regime

more complicated 
interactionshigher event rates

H

He

C

O

Ar

T2K 
Near Detector

T2K 
Far Detector

DUNE

Simplest 
interaction
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Chin. Phys. C 38, 090001 (2014)

H
2

● Pure hydrogen

– Technical requirement: bubble chamber (historical: 73, 79, 78, 82, 86)

– Safety issue: explosive

● Due to buoyancy, more dangerous for underground experiments 
● Neutrino interactions on hydrogen:

– In the last ~30 years there has been no new measurement

– No nuclear effects → much desired for flux constraint and nucleon cross section 
input for oscillation analysis

– Nucleon structure → new frontier of hadron physics

Xianguo Lu, Oxford

Neutrino-Hydrogen Interactions
– Review
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l p interaction → 3 charged particles: 
l p → l' X Y

Neutrino-Hydrogen Interactions
– The very idea

[XL, et al. Phys. Rev. D 92, 051302 (2015),
XL, JPS Conf. Proc. 12, 010034 (2016)]
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l p interaction → 3 charged particles: 
l p → l' X Y

Neutrino-Hydrogen Interactions
– The very idea

[XL, et al. Phys. Rev. D 92, 051302 (2015),
XL, JPS Conf. Proc. 12, 010034 (2016)]
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[XL, et al. Phys. Rev. D 92, 051302 (2015),
XL, JPS Conf. Proc. 12, 010034 (2016)]

Neutrino-Hydrogen Interactions
– The very idea

l p interaction → 3 charged particles: 
l p → l' X Y
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[XL, et al. Phys. Rev. D 92, 051302 (2015),
XL, JPS Conf. Proc. 12, 010034 (2016)]

Neutrino-Hydrogen Interactions
– The very idea

l p interaction → 3 charged particles: 
l p → l' X Y
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[XL, et al. Phys. Rev. D 92, 051302 (2015),
XL, JPS Conf. Proc. 12, 010034 (2016)]

Neutrino-Hydrogen Interactions
– The very idea

l p interaction → 3 charged particles: 
l p → l' X Y
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                                   Double-transverse momentum imbalance p
TT

● H: 0 
● Heavier nuclei: irreducible symmetric broadening

● by Fermi motion O(200 MeV) and FSI
● CH

n
: H interaction can be extracted

● H p
TT

~O(<10MeV) after detector smearing

● C p
TT

~ 200 MeV

Phys.Rev. D92 (2015) no.5, 051302

Xianguo Lu, Oxford

H

H

H

HC
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arXiv:1512.09042

2better tracking res.

Toy simulation of T2K performance (T2K neutrino flux on CH target)
➢ Realistic detector resolution as T2K gas TPC (~10% at 1 GeV/c)

Xianguo Lu, Oxford

arXiv:1512.09042

● When tracking resolution improves, only signal distribution gets narrower, 
background still wide due to Fermi motion and FSI! →Signal/background improves

Neutrino-Hydrogen Interactions
– Perspective

Measurements on-going...Stay tuned!
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DUNE
Near 
Detector

High-Pressure gas 
Time Projection Chamber 

(HPgTPC)
 Model: ALICE TPC

● State-of-the-art tracking resolution in gas 
TPC

ALICE TPC (~1% at 1 GeV/c)

● DUNE Near Detector 
High Pressure gas TPC 

can achieve 95% H purity with

50% He + 50% CH4 

or 
50% He + 50% C2H6  

Neutrino-Hydrogen Interactions
– Perspective
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1) Neutrino interaction allows measurements of oscillations
➢ profound questions of the existence of cosmos
➢ Nuclear effects, if not well understood, will forbid such measurements.

2) Neutrino interaction measurements: inclusive 'low-recoil' analysis and 
Transverse Kinematic Imbalances (TKI)
➢ -fit 2p2h-like enhancement directly applicable to 
➢ TKI cancel nucleon-level baseline physics, remove beam energy 

dependence, reveal various nature of nuclear effects 

3) Neutrino interaction on hydrogen needed for flux constraint and nucleon 
cross section input for oscillation analysis.
➢ TKI (p

TT
) provides safe access to H interaction.

➢ DUNE Near Detector HPgTPC with p
TT

 can achieve 95% purity with 

careful choice of gas mixture.

Xianguo Lu, Oxford

Summary
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1) Neutrino interaction allows measurements of oscillations
➢ profound questions of the existence of cosmos
➢ Nuclear effects, if not well understood, will forbid such measurements.

2) Neutrino interaction measurements: inclusive 'low-recoil' analysis and 
Transverse Kinematic Imbalances (TKI)
➢ -fit 2p2h-like enhancement directly applicable to 
➢ TKI cancel nucleon-level baseline physics, remove beam energy 

dependence, reveal various nature of nuclear effects 

3) Neutrino interaction on hydrogen needed for flux constraint and nucleon 
cross section input for oscillation analysis.
➢ TKI (p

TT
) provides safe access to H interaction.

➢ DUNE Near Detector HPgTPC with p
TT

 can achieve 95% purity with 

careful choice of gas mixture.

Xianguo Lu, Oxford

Summary Thank you!
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BACKUP
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Low-Recoil Tune / 2p2h-like enhancement
[MINERvA, manuscript in preparation]

Enhance Valencia 2p2h cross section as a function of (q0, q3)



75Xianguo Lu, Oxford

● Weight on 2p2h:
Tuned 2p2h = (1+G)·Valencia 2p2h, 
G: 2D Gaussian(q0, q3)

● Variations of weighted components 
(pp/nn, pn, or QE) as systematic 
uncertainties

Post-fit

Low-Recoil Tune / 2p2h-like enhancement
[MINERvA, manuscript in preparation]

● Weight up by 50% overall
● 2  in dip

Pre-fit
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T2K neutrino beam peak at 0.6 GeV
[T2K, Phys. Rev. D 98, 032003 (2018)]
MINERvA at 3 GeV
[MINERvA, Phys. Rev. Lett. 121, 022504 (2018)]

● GiBUU models 2p2h events with weight (T+1), where T is nuclear isospin parameter. 
● 2p2h in two model settings (T=0 and 1) at two different energies (0.6 and 3 GeV) all start at 


T
 → 0 and then evolve towards 

T
 → 180o with strong energy dependence.

● Gross feature of energy dependence confirmed by data; contradiction between preference 
on T at different energies indicates sub-leading order mis-modeling. 

L. Fields
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Assuming exclusive -p-A' final states
Use energy conservation to close the equations

p
n
: recoil momentum of the nuclear remnant

11C*

n

For CCQE, A' = 11C*
No more unknowns
p

n
: neutron Fermi motion

recoil

Fermi 
motion

A more general analysis of kinematic imbalance

Transverse:

Longitudinal:

New variable:

Neutrino energy is unknown (in the first 
place), equations are not closed.

Xianguo Lu, Oxford

Dual        
Interpretation

final-state

initial-state

[Furmanski, Sobczyk, Phys.Rev. C95 (2017) 065501]
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Only differ by longitudinal momentum imbalance
p

n
 has better physics sensitivity: 3D Fermi momentum

Using energy imbalance to solve longitudinal momentum imbalance [Phys. Rev. C 95, 065501 (2017)] 
p

T
 → p

N 

Single-TKI + p
N
 = Final-State Correlations

MINERvA Phys. Rev. Lett. 121, 022504 (2018)

Xianguo Lu, Oxford



79Xianguo Lu, Oxford

[Phys.Rev.Lett. 121 (2018) 022504] [Phys.Rev.Lett. 121 (2018) 022504]

Global Fermi Gas with Bodek-Ritchie tail Local Fermi Gas Spectral Function

2p2h-like enhancement has Base-Model-dependence

● Base Model depends on 1p1h and Short Range Correlation (SRC) modeling
● Critical to separate QE and RES to reduce Base-Model-dependence

11C*

n

recoil

Fermi 
motion

               Low-Recoil Tuned

NuWro
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END
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