The EDELWEISS dark matter search: Latest results and future plans

- Dark matter evidence candidates
- •Why use cryogenic detectors?
- Edelweiss Interdigit detectors latest results
- •Other cryogenic experiments CDMS/Edelweiss collaboration
- Future plans EURECA

Sam Henry, University of Oxford

Collaboration

- ≈ 50 people:
 - 30 senior researchers;
 - 11 PhD students;
 - 5 post-docs;

4 countries

- · CEA Saclay (DAPNIA & DRECAM)
- CSNSM Orsay
- IPN Lyon
- Institut Néel Grenoble
- KIT: IK, IEKP, IPE Karlsruhe
- JINR Dubna
- Oxford University
- Sheffield University

- Detectors, electronics, aquistion, data handling, analysis
- · Detectors, cabling, cryogenics
- · Electronics, cabling, low radioactivity, analysis, detectors, cryo
- · Cryogenics, electronics
- · Vetos, neutron detector, background, analysis, electronics
- · Background, neutron, radon monitors
- · Detectors, cabling, cryogenics, analysis
- MC simulations

Oxford group: Hans Kraus, Sam Henry, Mark Pipe, Philip Coulter, Xiaohe Zhang

Evidence for dark matter

- Rotation curves \rightarrow dark matter density in galxy
- Gravitational lensing \rightarrow map distribution on large scales
- CMBR → precision measurements of cosmological parameters
- Big bang nucleosynthesis \rightarrow non baryonic dark matter

The Bullet Cluster

Image credit:NASA/CXC/M.Markevitch et al. Optical: NASA/STScI; Magellan/U.Asizona/D.Clowe et al. Lensing map: NASA/STSCI; ESOWFI; Magellan/U.Arizona/D.Clowe et al.

Dark matter - candidates

- Neutrinos
- Axions
- Gravitinos, axinos
- WIMPs Weakly Interacting Massive Particles

Supersymmetric neutralinos Kaluza Klein particles Technibaryons

• Alternative gravity MOND - TeVeS

Buchmueller et. al. arXiv:1110.3568

CMSSN Parameter space excluded by LHC data

WIMP Direct Detection Requirements

- Search for elastic scattering of WIMPs off atomic nuclei
- Expected event rate 3 events/kg/year ($\sigma \sim 10^{-8}$ pb)
- Sensitive detectors, large absorber mass, low threshold, background discrimination

Direct dark matter detection

- Elastic WIMP scattering \rightarrow Nuclear recoil
- Background rejection discrimination electron recoils (α,β,γ) from nuclear recoils (n,WIMPs)

Cryogenic detectors

Phonon-ionization / phonon-scintillation

Phonon: most precise total energy measurement

Ionization / Scintillation: yield depends on recoiling particle

Nuclear / electron recoil discrimination.

Why use cryodetectors?

- Low threshold
 - Event rate increases exponentially at low energy
- Excellent energy resolution
 - Useful to identify background
- Event by event background discrimination
 - Phonon/ionization or phonon/scintillation measurement
- Wide choice of absorber materials
 - Event rate scales with atomic mass

Why use cryodetectors?

- Low threshold
 - Event rate increases exponentially at low energy
- Excellent energy resolution
 - Useful to identify background
- Event by event background discrimination
 - Phonon/ionization or phonon/scintillation measurement
- Wide choice of absorber materials
 - Event rate scales with atomic mass

Neutron calibration

Expérience pour DEtecter

EDELWEISS-II Dark matter search

- Search for scattering of WIMP dark matter
 - ~10keV nuclear recoil < 0.01 events/kg/day
- Need: Sensitive detectors with excellent discrimination. Low background
- Cryogenic germanium phononionization detectors
- Laboratoire Souterrain de Modane

Edelweiss – Detectors

Target:

Ge crystal Phonon - signal: NTD-Ge (~ 20 mK) Ionisation - signal: Inner disc / outer guard ring few V/cm Event by event background discrimination

Limitation – surface events (in detectors with plain electrodes)

Edelweiss – Detectors

Target:

Ge crystal Phonon - signal: NTD-Ge (~ 20 mK) Ionisation - signal: Inner disc / outer guard ring few V/cm Event by event background discrimination

Limitation – surface events (in detectors with plain electrodes)

EDELWEISS InterDigit (ID) detectors

Surface event (β) rejection: 10⁵

Bulk events: charge \rightarrow AC (Fiducial electrodes)

Surface events: charge \rightarrow B,D, guard ring

A. Broniatowski et al Phys Lett B 681 (2009) 305 [arXiv:0905.0753]

ID detectors – surface event rejection

A. Broniatowski et al Phys Lett B 681 (2009) 305 [arXiv:0905.0753]

laboratoire Souterrain de Modane

Edelweiss II Run April 2009 - May 2010

- Ten 400g germanium ID detectors
 - ¹³³Ba gamma calibration

Threshold set to 20keV for WIMP search

Edelweiss II Run April 2009 - May 2010

- Ten 400g germanium ID detectors
 - ¹³³Ba gamma calibration

Threshold set to 20keV for WIMP search

Edelweiss II Results - 325 day WIMP search

• Ten 400g ID Ge detectors, 384kg day

• Five nuclear recoil events (above 20keV)

EDELWEISS II Results – elastic scattering

EDELWEISS II Final result:

4.4×10⁻⁸pb excluded for 85GeV WIMP

Physics Letters B. 702 (2011) 329-335 arXiv:1103.4070

CDMS December 2009 result: 3.8×10⁻⁸pb,

Joint CDMS-EDELWEISS result: 3.3×10⁻⁸pb excluded at 90GeV Phys, Rev. D 84 (2011) 011102(R), arXiv:1105.3377 ²²

Edelweiss II Background estimate

- Gamma background 1.8×10^4 events (20-200keV) ¹³³Ba calibrations $\rightarrow 3 \times 10^{-5}$ leakage into NR band $\rightarrow < 0.9$ events
- Surface events 5000 events, rejection factor 6×10^{-5} $\rightarrow 0.3$ events
- Muon induced events missed by veto $\rightarrow <0.4$ events
- Neutrons from rock GEANT4 simulations \rightarrow 0.11 events
- Neutrons from contaminants in shield/cryostat \rightarrow 0.21 events
- Neutrons from connectors / cabling in cryostat \rightarrow 1.1 events

Total background estimate 3.0 events 90% CL

Edelweiss II Results – energy spectrum

EDELWEISS low energy analysis

- ID3 detector best heat and ionization resolution
- Define cuts in Fiducial ionization vs Heat energy plot
 - Gamma cut
 - Heat only pulse cut
- 31kg d
- For 8-30 GeV WIMP, we get 1-3 events in ROI
- Expected background ~1

EDELWEISS low energy analysis

Results – inelastic scattering

- WIMP-nucleus scattering \rightarrow excited state
- Mass splitting δ ~120keV, DAMA region excluded above 90GeV

EDELWEISS III

Increase detector mass Decrease background

- Search for dark matter to 5×10⁻⁹pb
- 40 FID-800 detectors installed 2012
- New Kapton cabling, connectors
- New cold electronics
- New cryostat design
- New internal PE shield
- New copper thermal shield

FID-800 detectors

- 800g crystals, fiducial mass >600g
- Improved background discrimination: 0 NR events / 4×10⁵ γ

(ID detectors 6 NRs / 3×10^5 γ)

Other cryogenic dark matter searches

CDMS – Soudan mine, cryogenic phonon - ionization germanium detectors

Ongoing collaboration

Will join forces to build EURECA

CRESST – Gran Sasso, cryogenic phonon – scintillation detectors (CaWO₄)

CDMS detectors

Z-sensitive lonization and Phononmediated©

- 250g Ge or 100g Si crystal 10mm x 75mm
- Athermal phonon sensors
 → position imaging
- Surface (Z) event veto based on pulse shape risetime
- Measure ionization with segmented contacts to allow rejection of events near outer edge

CDMS II: Background discrimination

CDMS – EDELWEISS combined limit Phys, Rev. D 84 (2011) 011102(R), arXiv:1105.3377

- Combined data from germanium detectors 614kg days
- 3.3×10⁻⁸pb excluded at 90GeV
- Improved limit for high mass WIMPs

Signal ~1event/tonne/year

 10^{2} WIMP Mass [GeV]

Need 1-tonne cryogenic detector, radiopure environment, excellent background discrimination

To test a dark matter signal: Multi-target detector

 10^{1}

 10^{3}

ZEPLIN III

EURECA Collaboration

EDELWEISS + CRESST + ROSEBUD collaborations + new members

France CEA: IRFU, IRAMIS CNRS: CSNSM, IPNL, Institut NÉEL, IAS, ICMCB Germany **MPI Munich** TUM Universität Tübingen Karlsruhe Institute of Technology Russia JINR Dubna Spain Universidad de Zaragoza Ukraine

INR Kiev

United Kingdom

University of Oxford University of Sheffield

EURECA detectors – options:

EDELWEISS type: FID-800, 800g Ge phonon-ionization detectors with surface event rejection. NTD-Ge sensors

Further mass increase?

CRESST type: 300g CaWO₄ phonon-scintillation detectors. Tungsten TES sensors

New scintillator materials?

EURECA: 10⁻⁵ gamma rejection or better above 10keV threshold

Scaling up to 1-tonne

Larger crystals: 1.7kg? Need to increase diameter to 10cm, and maintain quality

Mass production: Seek industrial partner to produce ~300 detectors / year

Readout: 1000+ channels for all detector types (possible UK lead?)

Tower geometry: multiple detectors mounted in towers

Radiopurity: Improve for all materials

Relative masses of scintillator and ionization detectors driven by background and physics reach

EURECA shielding

Target sensitivity: <few event/tonne/year Gamma rejection: 10⁻⁵ in ROI

Shielding: 3m water, 15cm copper, 15cm CH₂ Radiopurity: <0.02 mBq/kg U/Th in Cu of cryostat <10 mBq/kg U/Th materials inside inner shielding

Geant4 simulations

Astroparticle Physics 34 (2010) 70-79

Expected gamma rate: 0.02 events/kg/day/keV Expected neutron rate: 1.3 events per year in 500kg 38

EURECA water tank

Passive shield

PMTs to detect Cherenkov light from cosmic muons

Veto events due to muon induced neutrons

Simulations: <0.3 NR events/year in 1012kg Ge

Radiopurity

Screen materials using ultra low background HPGe detectors Store materials underground to minimise cosmogenic activation

LSM Ge detector lab

Clean surfaces to remove contamination

		le e el cence une el		
$SEAN 14 \mod \rightarrow$	expected	раскугоипа	event rates:	

Source	Material	Mass kg	Contaminations U/Th, ppb	Gamma-rays events/kg/day/keV	Neutrons events/year
Screens, Cu parts	Cu	3000	0.005	0.005	0.03
Support rods	Cu-Ni alloy	100	0.1	0.002	0.5
Cables, 10 mK	Cu, Kapton	2	0.5	0.003	0.02
Holders	Kapton	0.2	1	0.0008	0.01
Holders	PTFE	0.5	0.1	0.0003	0.2
Screws	Cu, Zn	10	0.2	0.005	0.03
Electrodes	AI	0.0001	200	0.0002	0.05
Connectors	Cu, Delrin	1	1	0.0001	0.03
Cables	Cu, Kapton	5	0.5	0.0001	0.03
Neutron shielding	CH_2	500	0.1	0.001	0.4
Electronics (FET)	FR4	1	2000	0.002	0.03
Water shielding	Water	1 kt	0.001	0.001	0.003
Total				0.02	1.3

EURECA site: Laboratoire Souterrain de Modane

EURECA Cryostat

How to cool a 1-tonne detector to 10mK

EDELWEISS cryostat

EURECA Timeline

2005: Collaboration formed (In Oxford)

2010-12: Design Study \rightarrow CDR

2012: TDR

2013/14: Construction (depending on funding)

2015: Begin data taking and in parallel improve and upgrade.

2018: One tonne target installed.

EURECA and SuperCDMS/GEODM

iZIP Ge detectors

SuperCDMS Soudan	10kg
SuperCDMS SNOLAB	100kg
GEODM DUSEL	1500kg

CDMS-EDELWEISS combined limit: 3.3×10⁻⁸pb excluded at 90GeV Phys, Rev. D84 (2011)011102(R)

Collaborate on R&D on areas of common interest: detectors, radiopure materials

But we remain independent experiments...

Summary

- Edelweiss-II: Direct WIMP search with cryogenic germanium detectors
- Interleaved electrodes allow surface event rejection
- Ten 400g Ge-ID detectors 384 kg day
- 4.4×10⁻⁸pb excluded for 85GeV WIMP
- Edelweiss+CDMS 3.3×10⁻⁸pb
- Edelweiss-III: Aim: 5×10⁻⁹pb, FID-800 detectors
- EURECA: Aim: 10⁻¹⁰pb, next generation
 European cryogenic dark matter experiment