The Λ_b^0 baryon at LHCb

UNIVERSITY OF BIRMINGHAM SCHOOL OF PHYSICS AND ASTRONOMY SEMINAR 21/10/15

Peter Griffith University of Birmingham, UK

1

Contents

- B-physics at the LHC
- Heavy baryons in B-physics
- The LHCb detector
- Understanding the Λ_b^0 baryon at the LHC
- Key measurements
- FCNC decays with Λ_b^0
- $\Lambda_b^0 \rightarrow p K^- \mu^+ \mu^-$ in detail
- Summary

Flavour physics, SM and BSM

Hierarchy Problem

Gravity -

The very successful Standard Model

Matter/antimatter asymmetry

Dark Matter

Dark Energy

University of Birmingham 21/10/15

Lb baryon at LHCb Pete

Peter Griffith

B-physics at LHCb:

- B-physics presents many ways to test and constrain the SM
- Excellent probes for New Physics
- & precise measurements of SM
 - CP measurements
 - FCNC observables (bs->ll etc.)
 - New intermediate states/particles

B-physics at LHCb:

- Abundant b-quark production at the LHC
 - $\sigma(p\bar{p} \rightarrow b\bar{b}X) \sim 80\mu b$
 - ~ 100,000 $b\overline{b}$ pairs per second
- 40% of heavy quark production within the acceptance of LHCb
- Production fraction, $\frac{f_{\Lambda_b^0}}{f_d} \sim 0.4 \text{plenty of } \Lambda_b^0 s$ at the LHC! (20% of b hadrons)
- Λ_h^0 has half integer spin opens the door for unique measurements

Data taking at LHCb

- Total amount of data after Run1: $3fb^{-1}$
 - $\sim 1fb^{-1}$ in 2011 < $\ell > \sim 2.7e32 \ cm^{-2}s^{-1}$
 - $\sim 2fb^{-1}$ in 2012 < $\ell > \sim 4.0e32 \ cm^{-2}s^{-1}$
- Comparatively low
 - LHCb employs 'lumi levelling' constant rather than high instantaneous luminosity preferred.
 - Some precision measurements require very well known luminosity
 - PID system becomes 'saturated' at higher luminosities

$\sim 5 kHz$ read out rate to disk (1 kHz originally planned)

deadtime)

Lb baryon at LHCb

Peter Griffith

Λ_b^0 at LHCb

Interesting measurements and discoveries

Measuring $|V_{ub}|$ with $\Lambda_b^0 \rightarrow p\nu\mu$

- Previous inclusive measurements by Babar and Belle
- Large disagreement between inclusive and exclusive measurements – new particle with right-handed coupling? $|V_{+}|^{2} = B(\Lambda^{0}_{+} \rightarrow nu^{-} \overline{V_{+}})$

$$\frac{|V_{ub}|^2}{|V_{cb}|^2} = \frac{B(\Lambda_b^0 \to p\mu^- \overline{\nu_\mu})}{B(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu_\mu})} R_{FF}$$

Where R_{FF} is the ratio of relevant form factors

 $\epsilon_R \sim -0.2$ \rightarrow new particle would have ~20% coupling strength of the W boson

Visible

mass

Candidates with $100 MeV/c^2$ uncertainty are selected

(1,0)

(CKM 2014)

6 (HFAG 2014)

9

LHCb $|V_{ub}| / |V_c$

Inclusive |V_{ub}

New LHCb measurement removes

But why the initial disagreement?

the need for a new particle.

(0,0)

Resonances in $\Lambda_b^0 \rightarrow J/\psi p K^-$

- Two resonances observed in $\Lambda_b^0 \rightarrow J/\psi p K$
- Consistent with pentaquark state with content quark *cuud*

Six dimensional amplitude fit. Using just Λ^* states is not adequate. Two additional states required

/ψрК		<i>P_c</i> (4450)	<i>P_c</i> (4380)
th	Mass (MeV/ c^2)	4449.8 ± 4.2	4380±37
	J^P	$\frac{5^{+}}{2}$	$\frac{3}{2}^{-}$
	Significance, σ	12	9
	P _c (4450)	P _c (4380)	arXiv:1507.03
-0.35 [

 ΓHCD

Measurement of the Λ_b^0 polarisation

- First of its kind at a hadron collider
- Uses $\Lambda_b^0 \to J/\psi \Lambda$ decays
 - Decay of a spin $\frac{1}{2}$ particle into spin 1 and $\frac{1}{2}$ particles

Angular analysis performed on all three angles to

Transverse production polarisation: 0.06±0.07±0.02

Appears to be small (O(10%) or less)

• Not so favourable for studying photon helicity in $\Lambda_b^0 \to \Lambda \gamma$ and $\Lambda_b^0 \to \Lambda^* \gamma$ decays if small \circledast

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\Omega_{3}}(\cos\theta,\cos\theta_{1},\cos\theta_{2}) = \int_{-\pi}^{\pi}\int_{-\pi}^{\pi} \frac{\mathrm{d}\Gamma}{\mathrm{d}\Omega_{5}}(\theta,\theta_{1},\theta_{2},\phi_{1},\phi_{2}) \,\mathrm{d}\phi_{1} \,\mathrm{d}\phi_{2}$$
$$= \frac{1}{16\pi}\sum_{i=0}^{7} f_{i}(|\mathcal{M}_{+\frac{1}{2},0}|^{2},|\mathcal{M}_{-\frac{1}{2},0}|^{2},|\mathcal{M}_{-\frac{1}{2},-1}|^{2},|\mathcal{M}_{+\frac{1}{2},+1}|^{2})$$
$$g_{i}(P_{b},\chi_{A}) h_{i}(\cos\theta,\cos\theta_{1},\cos\theta_{2}).$$

Decay amplitudes

Λ_b^0 lifetime measurement

- Lifetime measured with $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays
- Relative to $\overline{B^0} \to J/\psi \pi^+ K^-$ lifetime
- $1fb^{-1}$ of data

ALEPH A_lepton

ATLAS.

LHCb J/wp

Average

OPAL

DELPH

1.180 ^{+0.130}_{-0.120} ±0.030 ps

 $\begin{array}{r} 1.300 \begin{array}{c} {}^{+0.260}_{-0.210} \ \pm 0.040 \ \mathrm{ps} \\ 1.290 \begin{array}{c} {}^{+0.240}_{-0.220} \ \pm 0.060 \ \mathrm{ps} \\ 1.110 \begin{array}{c} {}^{+0.290}_{-0.220} \ \pm 0.050 \ \mathrm{ps} \end{array}$

1.320 ±0.150 ±0.070 ps 1.401 ±0.046 ±0.035 ps 1.290 $^{+0.120}_{-0.110}$ $^{+0.087}_{-0.091}$ ps 1.303 ±0.075 ±0.035 ps

1.449 ±0.036 ±0.017 ps

1.503 ±0.052 ±0.031 ps

1.415 ±0.027 ±0.006 ps

1.479 ±0.009 ±0.010 ps

1.565 ±0.035 ±0.020 ps

1.467 ±0.010 ps

1.1 1.2 1.3 1.4 1.5 1.6

Rare Decays at LHCb

- FCNC's can occur through loops
 - Highly suppressed
 - Sensitive to new physics e.g. additional diagrams from new BSM particles in loops
 - Numerous observables many very sensitive to NP
- LHCb ideal for studying rare FCNC decays of mesons and baryons, e.g. $b \rightarrow s$
 - High resolution tracking
 - High performance PID
 - Muon signals 'clean' at LHCb

b

S

$\Lambda_h^0 \to \Lambda \mu^+ \mu^-$ Branching ratio measurement

LHCb-PAPER-2013-025

- Previously measured at CDF
- No signal observed at low q^2 at either CDF or LHCb but results consistent with SM
- Now updated to $3fb^{-1}$, with angular analysis •

$$\Lambda_b^0 \to \Lambda \, \mu^+ \mu^- \, 3fb^{-1}$$
 update

- First evidence of the signal at low q^2 ! (3 σ)
- Slight deviation from SM predictions similar to other $b \rightarrow sll$ measurements

Hadronic A_{FB}

Forward backward asymmetries measured

arXiv:1503.07138

$\Lambda_b^0 \to p K^- \mu^+ \mu^-$

Branching fraction measurement

 $\Lambda_b^0 \to p K^- \mu^+ \mu^-$

- Rare FCNC decay through excited states
- Likely dominated by $\Lambda_h^0 \to \Lambda^*(1520)\mu^+\mu^-$
- $m(pK^{-})$ structure known
- 'Unobserved'

	$\int u -$		>	— u]
	d		•	$-d \mid d$
	Λ_b^0 –		\sim	u
cited states	_ <i>b</i> —	\rightarrow	W^-	$\begin{bmatrix} & \bar{u} \\ & s \end{bmatrix} F$
$(1520)\mu^{+}\mu^{-}$		u/c/t	Y/Zº	
			2	μ^+
All variables blinded	in		Y	
mass region of the Λ_1^0) h		(μ^-

Non-resonant $\Lambda^0_h \to p K^- \mu^+ \mu^-$

State, J^P	LD	SM1	SM2	SUSY
$\Lambda(1115) 1/2^+$	a	0.60	0.70	1.0
	b	21	32	32
$\Lambda(1600) 1/2^+$	a	0.027	0.32	0.53
	b	2.6	35	35
$\Lambda(1405) 1/2^-$	a	0.094	0.21	0.32
	b	5.9	19	19
$\Lambda(1520) 3/2^-$	a	0.13	0.21	0.34
	b	14	24	24
$\Lambda(1890) 3/2^+$	a	0.018	0.097	0.17
	b	1.3	5.8	5.9
$\Lambda(1820) 5/2^+$	a	0.013	0.082	0.15
	ь	0.84	4.6	4.7

University of Birmingham 21/10/15

Very limited theoretical knowledge

Branching fraction predictions (in units of 10e6) for SCA (SM1) and MCN (SM2) models. (a and b without and with LD charmonium contributions respectively) arXiv:1108.6129

	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_9	C_{10}
\mathbf{SM}	-0.243	1.105	0.011	-0.025	0.007	-0.031	-0.312	4.193	-4.578
SUSY							0.376	4.767	-3.735

SUSY Wilson coefficients from M. J. Aslam, Y.-M. Wang and C.-D.

Phys. Rev. D 78, 114032 (2008) at LHCb

Lu,

Peter Griffith

 $m(pK^{-})$ in $\Lambda_{h}^{0} \rightarrow (I/\psi \rightarrow \mu^{+}\mu^{-})pK^{-}$

$\Lambda_b^0 \to p K^- \mu^+ \mu^-$ branching fraction measurement

- Measured relative to $\Lambda_b^0 \rightarrow J/\psi p K^-$
 - Simpler calculation
 - Cancellation of systematic effects
- Lack of theoretical and experimental knowledge
 - \rightarrow Lots of 'correcting' to be done

$m(pK^-)$ in $\Lambda^0_b \to J/\psi pK^-$

MC is produced with only phasespace kinematics

Experimentally motivated model for decay structure would need full amplitude analysis

$\Lambda_b^0 \rightarrow p K^- \mu^+ \mu^-$ branching fraction measurement

Could see large signal where MC

statistics are relatively low

Peter Griffith

- Measured relative to $\Lambda_b^0 \rightarrow J/\psi p K^-$
 - Simpler calculation
 - Cancellation of systematic effects
- Lack of theoretical and experimental knowledge
 - \rightarrow Lots of 'correcting' to be done

University of Birmingham 21/10/15

Lb baryon at LHCb

$m(pK^-)$ in $\Lambda_b^0 \to J/\psi pK^-$

MC is produced with only phasespace kinematics

Experimentally motivated model for decay structure would need full amplitude analysis

LHCb

Analysis strategy:

The LHCb dataflow

Lнср Гнср

Analysis strategy: acceptance and efficiency

Correcting Λ_b^0 production kinematics

- Use another Λ_b^0 mode?
 - Only $\Lambda_b^0 \to J/\psi p K^-$ has similar phase-space coverage
 - Need strong cuts to achieve pure sample

 $\Lambda_{
m b}^{0}
ightarrow p K^{-} \mu + \mu^{-}$ decay structure

- Correlation between all angles and the two masses
- Need model of at least 5D to account for all correlations*

 $\epsilon (\cos\Theta_b, \cos\Theta_l, \Delta\phi, m(pK_y^-), q^2)$

- Needs to perform well with high no. of dimensions and finite MC stats
- * 7D if we do not assume negligible production polarisation

Finding a 'goldilocks' model

(or an adventure in failed techniques!)

- Always a trade off between accuracy and speed
- Speed important when it comes to systematics (e.g Toy MC's)
- Need to find a trade-off that's 'just right'

 $\Lambda_b^0 \rightarrow p K^- \mu + \mu^-$ decay structure

- Correlation between all angles and the two masses
- Need model of at least 5D to account for all correlations*

 $\epsilon (cos\Theta_b, cos\Theta_l, \Delta\phi, m(pK_y^-), q^2)$

- Needs to perform well with high no. of dimensions and finite MC stats
- * 7D if we do not assume negligible production polarisation

Kernel density estimation?

- Phase space populated with kernels to estimate the pdf.
- A form of 'data-smoothing'
 - Good for low statistics/many dimensions
- Estimate density in 1D projections
- Then perform correlated multidimensional KDE on full phase-space
- Perform boundary correction

University of Birmingham 21/10/15

Lb baryon at LHCb

Peter Griffith

Bad:

Good:

Incredibly CPU

intensive!

Incredibly accurate!

Slices through each plain of the multi-dimensional phasespace, unfolded into 1 dimension, showing ratio between MC after full reconstruction/selection and generator level MC weighted with the KDE pdf.

Neural Network?

Good: Very fast!

Bad:

Comparison of weighted generator level MC and full selection MC

Not so accurate...

Dealing with MC discrepancies - efficiency

Legendre polynomials

- Reweighting function generated for each event.
- Models acceptance effects assuming flat at generator level
 - True for angles (spherically isotropic in phase-space MC)
 - Not true for mass
- \rightarrow Model both MC samples and perform ratio of efficiency functions

$$\epsilon^{event} (\cos\Theta_b, \cos\Theta_l, \Delta\phi', m[pK^-]^{2'}, q^{2'}) = \sum_{i,j,k,l,m} c_{ijklm} P_i(\cos_{\theta_l}) P_j(\cos_{\theta_b}) P_k(\Delta\phi') P_l(m[pK^-]^{2'}) P_m(q^{2'})$$

$$c_{ijklm} = c_0 M_{ijklm} (2i+1)(2j+1)(2k+1)(2l+1)(2m+1)$$

$$M_{ijklm} = \frac{1}{N_{events}} \sum_{0}^{N_{events}} P_i(\cos_{\theta_l}) P_j(\cos_{\theta_b}) P_k(\Delta\phi') P_l(m[pK^-]^{2'}) P_m(q^{2'})$$

Dealing with MC discrepancies - efficiency

Fast enough and accurate enough!

Efficiency correction now largely independent of MC model

Systematic uncertainty evaluated with `bootstrapping`

University of Birmingham 21/10/15

Calculating
$$\frac{B(\Lambda_b^0 \to pK^- \mu^+ \mu^-)}{B(\Lambda_b^0 \to J/\psi pK^-)}$$

Event weight from **Corrected yield** background subtraction $\rightarrow \frac{B(\Lambda_b^0 \to pK^- \mu^+ \mu^-)}{B(\Lambda_b^0 \to J/\psi pK^-)} = \frac{N(\Lambda_b^0 \to pK^- \mu^+ \mu^-)}{N(\Lambda_b^0 \to J/\psi pK^-)} = \frac{\sum_i w_i^{\mu\mu} / \epsilon_i^{\mu\mu}}{\sum_i w_i^{J/\psi} / \epsilon_i^{J/\psi}}$ Systematics propagation: Includes sources of **Event efficiency correction** systematic uncertainty on $\sigma(N) = \sqrt{\sum_{i} \left(\frac{w_i}{\epsilon_i}\right)^2}$ acceptance/efficiency Other sources, e.g. $\rightarrow \sigma^{tot}(N) = \sqrt{\sigma(N)^2 + \left(\frac{N}{N_{obs}}\sigma^{shape}(N)\right) + \dots}$ yield extraction model uncertainties

Sources of systematic uncertainty

Λ_b^0 lifetime

$q^2{\sf bin}$	Efficiency	Systematic Error (%)
0.1-2	0.07688	2.6
2-4	0.09032	2.3
4-6	0.09626	2.1
6-8	0.09726	2.0
8-11	0.09593	2.1
11-12.5	0.08881	2.2
12.5-15	0.08173	2.4
15-17.5	0.06517	3.0

Absolute uncertainty on $\Lambda_b^0 \rightarrow pK^-\mu^+\mu^-$ Relative uncertainty near negligible thanks to LHCb and CMS lifetime measurements

Particle Identification

$\sigma(\epsilon_{PID}^{tot}) = \sqrt{\left(\epsilon_{PID}^{\alpha} - \epsilon_{PID}^{\beta}\right)^2 + \sigma\left(\epsilon_{PID}^{\alpha}\right)}$
--

$q^2~({ m GeV}/c^2)$	ϵ^{lpha}_{PID} (%)	$\sigma\left(\epsilon_{PID}^{\alpha}\right)$	ϵ^{β}_{PID} (%)	$\sigma\left(\epsilon_{PID}^{\beta}\right)$	$\sigma\left(\epsilon_{PID}^{total}\right)$
0.1-2.0	76.9	0.027	78.4	0.015	1.59
2.0-4.0	79.4	0.029	78.0	0.016	1.35
4.0-6.0	75.4	0.033	77.2	0.018	1.84
6.0-8.0	74.2	0.041	76.3	0.023	2.10
11.0-12.5	69.7	0.100	72.9	0.057	3.20
15.0-17.5	66.9	0.400	71.2	0.25	4.34
Integrated	75.26	0.015	77.16	0.0081	0.157

Yield extraction fit

PID systematic is combination of two uncertainties:

- Statistical uncertainty from bin populations of correction table
- Uncertainty from bin widths (can hide fine structure in PID efficiency space)

Efficiency model + MC statistics

q^2 bin	Efficiency	Systematic Error
0.1-2	0.03385	0.0006
2-4	0.04517	0.0007
4-6	0.05333	0.0009
6-8	0.05792	0.0011
8-11	0.06032	0.0013
11-12.5	0.05790	0.0027
12.5-15	0.05440	0.0033
15-17.5	0.04276	0.0095

LHCD

Λ⁰_b kinematics

University of Birmingham 21/10/15

Lb baryon at LHCb

Peter Griffith

Signal: Double crystal ball B_s^0 and B^0 backgrounds: DCB (opposite sign tails) Combinatorial: exponential

 $B_s^0 \rightarrow K^+ K^- \mu^+ \mu^-$ yield constrained by fitting mass reflection in upper sideband Take side band – clean of Λ_b^0 Swap proton \rightarrow kaon $\Lambda_b^0 \rightarrow p K^- \mu^+ \mu^-$ to be unblinded in the coming weeks followed by publication -stay tuned!

LHCD

 B_s^0 pdf parameters constrained from MC. Yield constrained from data using:

$$= \int_{m_a}^{m_c} f(x)_{B_s} dx \equiv \int_{m_a}^{m_b} f(x)_{B_s} dx + \int_{m_c}^{m_b} f(x)_{B_s} dx$$

University of Birmingham 21/10/15

Peter Griffith

Summary - $\Lambda_b^0 \rightarrow p K^- \mu^+ \mu^-$

- First official observation and branching fraction measurement
- Blind analysis
- Blind in another sense!
 - No experimental knowledge
 - Almost no theoretical knowledge
- $b \rightarrow sll$ studies currently a 'hot topic'
- Opens the door for further measurements with Run2 data
 - CP-asymmetry
 - Forward-backward asymmetry
 - Amplitude analysis
- Still in progress but almost there
 - Scheduled for review this winter

Summary - $\Lambda_{\rm h}^0$ physics at LHCb

- Some of the most precise Λ_h^0 measurements yet
- Still a lot less well known than the mesonic b-sector
- Anomalies seen in $b \rightarrow sll$ decays at LHCb prompt further study of these hadronic counterparts •
- Recent LHCb results from Λ_h^0 rare decays hint at similar pattern of SM discrepancy!
- To take full advantage of the Λ_h^0 sector requires a lot of groundwork
 - Experimentally: $\tau_{\Lambda_b^0}, \frac{f_{\Lambda_b^0}}{f_d}$, polarisation, branching fraction measurements of ideal control channels , e.g. $\Lambda_h^0 \to J/\psi p K^-, \Lambda_h^0 \to \tilde{J}/\psi p \pi^-$
 - Theoretically: Form factors, predictions (BR, A_{FB}) etc.
- Some surprises, e.g discovery of states consistent with pentaquark in $\Lambda_h^0 \to I/\psi p K^-$!

Fig1: penguin decay

Thanks for listening!