Searches for Higgs Bosons in the VH(bb) Channel at ATLAS

Paul Thompson University of Birmingham

> Birmingham PP Seminar 15th October 2014

- Recent final results on the search in the VH(bb) channel at ATLAS in LHC Run 1
- Prospects for search in LHC Run 2
- Using the same final state to probe physics Beyond the Standard Model (BSM)

Why H->bb

- Since discovery on 4th July 2012 of a new particle with J^P=0⁺ decaying via H-> $\gamma\gamma$, H->ZZ,H->WW and with mass m_H=125 GeV
- No strong deviations from the BEH properties and the Higgs boson which is responsible for electroweak symmetry breaking

- Some evidence for direct decay of H to fermionic modes (as well as indirect couplings to quarks) important to see evidence of coupling to down type quarks
- H->bb predicted largest SM branching ratio at m_H=125 GeV Also good to measure H->bb rate as many BSM theories involve enhanced couplings to b

Standard Model H->bb Branching Ratio

SM Branching ratio at 125.4 GeV							
bb	WW	TT	ZZ	YY	Zγ	μμ	
57%	22%	6.3%	2.7%	0.23%	0.15%	0.02%	

Production Modes

Inclusive H->bb, multijet cross section g->bb is overwhelming(10⁷ larger)!

VH process V=W,Z

- Cross section : 0.70pb(WH),0.41pb(ZH)
- Associated W/Z helps triggering events, background suppression (lepton, MET)
 → Main process for H→bb analysis

SM Higgs Latest Status

7 TeV ~4.5fb⁻¹, 8 TeV ~20fb⁻¹

From LHC seminar 07/10/2014

 Updated coupling measurements of "big 5" channels using full Run1 data

The final Run 1 Higgs picture from ATLAS nearly complete...

Searches for H->bb at ATLAS

Latest ATLAS Higgs Results

5.2σ, 10% gain in recent improvements, consistent with SM in all production modes ggF, VBF, VH,...

8.1σ, 20% gain in recent improvements. Richard Mudd's seminar 12th November

 6.1σ , 30% gain in recent improvements, VBF@ 3.2σ

4.5σ evidence of Higgs boson coupling to taus!

The Road to H->bb Results

First ATLAS publication on search for VH (V=W,Z) and H->bb on 2011 7 TeV data submitted in the June 2012

- 95% exclusion on Higgs mass around 2-5 times the standard model
 - Slower turn around of analysis due to large and complicated background composition, calibration of detector e.g. b-tagging
 - Analysis teams (myself and Benedict Allbrooke @Bham) plus 1-2@Liverpool
 - Things were smaller scale back then...

35% C.L. limit on σ/σ_{SM}

10

2

0

110

ATLAS

Observed (CLs)

····· Expected (CLs)

115

120

± 1σ $+2\sigma$

130 m_H [GeV]

 $\sqrt{s} = 7 \text{ TeV},$ Ldt = 4.6-4.7 fb

125

VH(bb), combined

250

"HSG5" Meeting, Dubna, Russia, 2011

ATLAS HSG5 Workshop, 17-19 May 2011, Dubna

Searches for H->bb at ATLAS

"HSG5" Meeting, Marseille, France, 2013

Discussing final analysis improvements and optimisations mainly on 2012 8TeV dataset, including extensions to multi-variate analyses,...

H->bb: How?

Analysis is divided into different V decays, each with different backgrounds

1 lepton

W

Low $\Delta \Phi(E_T^{miss}, p_T^{miss})$, High p_T^{miss} to reject multi-jets

Dominant backgrounds:

- W/Z+heavy(light) flavour jets
- Top (ttbar and single top)
- QCD Multijet
- Diboson VZ, with Z->bb and V=W,Z.
 Z resonance can be used as "standard candle"

2 lepton

H->bb: Analysis Strategy

Analysis strategy:

- Best sensitivity use multivariate techniques (MVA)
- "Dijet mass" ("cut-based") analysis using m_{bb} as discriminant serves as a cross check
- In both cases exploit signal bkg differences vs p_T^V, jet multiplicity, b-tagging
- Improve m_{bb} resolution to increase sensitivity, improve separation from VZ
- Control backgrounds across 0,1,2 channels

Background modelling and control regions (CR):

- Z+heavy(light) flavour jets, define control regions/shape uncertainties from data
- W+heavy, light/charm from CR, Wbb shape from MC
- Top (ttbar and single top), control regions at higher jet multiplicity, shape uncertainty from MC
- Multijet, derived shapes/normalisations from the data. Keep it small!

ATLAS Detector

0 Lepton: Level 1 Calorimeter trigger, calorimeter up to $|\eta|$ < 4.9

2 Lepton: 2^{nd} leptons from $p_T > 7$ GeV

1 Lepton: Single lepton triggers and reconstruction p_T >25 GeV, $|\eta|$ <2.5,

0,1,2 Lepton: Silicon Tracking -b-tagging up to |η|<2.5, with high rejection of light (1400) and charm (26) for 50% efficiency -Reduce pile-up by matching tracks in jet to primary vertex

m_{bb} Reconstruction

- Start from jets from topological calorimeter clusters
- Apply a series of jet level corrections (Global Sequential Calibration)
- Add any close by muons from semi-leptonic decays to the jet
- Apply a "resolution correction" as a function of pT of the jet to get to "true" pT
- In 2 lepton events have additional constraint that no real MET in event. Apply kinematic fitting to further improve resolution

"Selected Jets" used in optimisation. $p_T > 20$ GeV and $|\eta| < 2.5$

b-tagging categories

- Use the "MV1c" tagger. Multivariate tagger with inputs based on track parameter significance and secondary decay reconstruction. Gives improved charm rejection. Select jets starting from 80% efficiency working point
- Working points from 80%,70%, 50% called "Loose", "medium", "Tight"
- Define TT,MM,LL categories to improve sensitivity
- TT and MM more signal, LL used to constrain backgrounds

Event Selection

NU	– not used	"Cut-based" – optimised cuts! "				'MVA" -	- looser cuts	
:	Variable Dijet-mass analysis					Multiva	ariate analysis	
			Comr	non selectio	on			
ets	$p_{\rm T}^V [{\rm GeV}]$	0–90	$90^{(*)}$ -120	120 - 160	160 - 200	> 200	0-120	> 120
/+j	$\Delta R(\mathrm{jet}_1,\mathrm{jet}_2)$	0.7 - 3.4	0.7 - 3.0	0.7 - 2.3	0.7 - 1.8	< 1.4	> 0.7 (p	$p_{\rm T}^V < 200 \text{ GeV}$
	MET Trigger, N	/ET>100	GeV 0-lep	ton selectio	n			
	$p_{\rm T}^{\rm miss}$ [GeV]		> 30		$>30\ < \pi/2$			> 30
multijet	$\Delta \phi(m{E}_{\mathrm{T}}^{\mathrm{miss}},m{p}_{\mathrm{T}}^{\mathrm{miss}})$	NU trigger	$<\pi/2$					$<\pi/2$
	$\min[\Delta \phi(\boldsymbol{E}_{\mathbf{T}}^{\mathbf{miss}}, \mathbf{jet})]$		-	> 1.5		NU	> 1.5	
	$\Delta \phi(\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{dijet})$		> 2.2		> 2.8			> 2.8
	$\sum_{i=1}^{N_{\text{jet}}=2(3)} p_{\text{T}}^{\text{jet}_i} \text{ [GeV]}$		> 120 (NU)	>	120 (150)			> 120 (150)
			1-lep	ton selectio	nSingle Le	pton trig	ger, plus I	MET trigger(μ)
jet	m_{T}^{W} [GeV] – (120					_		
Ilti	$H_{\rm T}$ [GeV]		> 180	_		> 180	_	
m	$E_{\rm T}^{\rm miss}$ [GeV]		-	> 20 > 50		-	> 20	
			2-lep	ton selectio	n Single	e/dilepto	on trigge	er
d	$m_{\ell\ell} \; [\text{GeV}]$			83-99			71-121	
To	$E_{\rm T}^{\rm miss}$ [GeV]	< 60				_		

2 b-jets highest p_T jets and 1 jet p_T >45 GeV. Reduce top, no jets p_T >30 GeV and 2.5< $|\eta|$ <4.5

MC Production

LO and NLO MC Generators

Process	Generator	_
$Signal^{(\star)}$		_
$q\overline{q} \rightarrow ZH \rightarrow \nu\nu bb/\ell\ell bb$	PYTHIA8	_
$gg \rightarrow ZH \rightarrow \nu \nu bb/\ell \ell bb$	POWHEG+PYTHIA8	—● Data
$q\overline{q} \to WH \to \ell\nu bb$	PYTHIA8	VH(bb) (μ=1.0)
Vector boson $+$ jets		Diboson
$W \to \ell \nu$	Sherpa 1.4.1	Single top
$Z/\gamma * \to \ell \ell$	Sherpa 1.4.1	W+hf
$Z \rightarrow \nu \nu$	Sherpa 1.4.1	W+cl
Top-quark		Z+hf
$t\bar{t}$	POWHEG+PYTHIA	Z+cl
<i>t</i> -channel	AcerMC+pythia	Z+I Multijet
s-channel	POWHEG+PYTHIA	Uncertainty
Wt	POWHEG+PYTHIA	Pre-fit backgroun
$Diboson^{(\star)}$	POWHEG+PYTHIA8	_
WW	POWHEG+PYTHIA8	_
WZ	POWHEG+PYTHIA8	
ZZ	POWHEG+PYTHIA8	_

Plus many more programs used to evaluate modelling systematic uncertainties

- Monte Carlo statistics vital (many times data luminosity required)
- Use ATLFAST-II simulation (fast parameterisation of calorimeter response, else GEANT4). ~0.5x10⁹ evts
- High signal statistics required for MVA training. Multiple mass points for exclusion limits.
- For V+jets use heavy flavour filters, p_T^V slicing, jet multiplicity enhanced weighting
- Difficult to get enough V+light jets due to large cross section. Apply mistagging probability as a weight as function of p_T, η with ΔR correction
- Common group level "mini-ntuples" obtained from MC or derived datasets on the Grid. All preselected samples with systematics ~1.5 TB

Multivariate Analysis

- Use a boosted decision tree (BDT)
- As well as m_{bb} train using up to 16 discriminating variables, including p_T^V and $\Delta R(b,b)$. Make sure variables are well described by MC models.
- Train signal against weighted sum of backgrounds, similar results as using "cascade"
- Train in 2/3 jet categories and at high and low p_T^V
- Train for different m_H for exclusion plot

Data 2012 VH(bb) (μ=1.0)

Diboson

Single top

Uncertainty

Pre-fit backgrour VH(bb)×90

400

450 500

p^v [GeV]

Multijet

W+hf

Z+ht

2 b-taq

300 350

1lep

Variable	0-Lepton	1-Lepton	2-Lepton			
$p_{\mathbf{T}}^{V}$		×	×			
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	×			
$p_{\mathbf{T}}^{b_1}$	×	×	×			
$p_{\mathbf{T}}^{b_2}$	×	×	×			
m_{bb}	×	×	×			
$\Delta R(b_1, b_2)$	×	×	×			
$ \Delta\eta(b_1, b_2) $	×		×			
$\Delta \phi(V,bb)$	×	×	×			
$ \Delta\eta(V,bb) $			×			
H_{T}	×					
$\min[\Delta \phi(\ell,b)]$		×				
$m^W_{ m T}$		×				
$m_{\ell\ell}$			×			
$MV1c(b_1)$	×	×	×			
$MV1c(b_2)$	×	×	×			
	Only in 3-jet events					
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×			
m_{bbj}	×	×	×			

BDT Training

- Use TMVA. Tune parameters of training across phase space, finer 1-D scans, study effect of adding each new variable
- Need high signal stats, also maximise MC statistics. Split sample into 2. Train and evaluate each half against each other
- Check correlations of all variables from 2D histograms!

Background Modelling

- MC doesn't always describe data!
- E.g. mismodelling in 1 Lepton, 0 tag ∆φ(jet₁,jet₂)
- Reweighting improves p_T^W modelling
- Similar story in 2 lepton (2 tag CR)
- Systematic errors (nuisance parameters) applied for the different backgrounds

Background Modelling

- Can check that the corrections to the backgrounds worked
- p_T^W distribution in 1 lepton loose tags and medium+tight tag regions

Binning Transformations

- Want finer binning in signal region. Coarser in background region.
- Rebinning algorithm applied (based on Nsig and Nbkg), plus further requirement <10% statistical error on total background
- Parameters of algorithm tuned to maximise signal sensitivity
- Also applied to m_{bb} in dijet-mass analysis Searches for H->bb at ATLAS

Final Discriminants

- BDT Output distribution (2 btag) and MV1c (1 tag)
- 2 b-tag: (0,1,2 leptons) x (p_T^V bin)x (2,3 jets) x (LL, MM+TT)
- 1-tag region helps to constrain backgrounds e.g. Vcl
- BDT Output distribution (2 btag) and MV1c (1 tag):251 and 38 regions

"Global Fits"

- Binned maximum likelihood fits
- Impact of systematic uncertainties described by nuisance parameters (NPs)
- Each NP constrained by penalty term in likelihood, associated with its error
- The statistical uncertainty of MC taken into account using bin-by-bin NPs
- Some statistical variations need to be smoothed
- To save processing time, errors with negligible impact are "pruned"
- 170 NPs (approx. half experimental)
- Plus add in previously analysed 7 TeV data
- Dijet mass analysis serves as a cross check
- Some backgrounds constrained by data
- Described by scale-factors e.g. 8 TeV MVA
- Different scale factors for top background in 3 channels due to different final state objects

Process	Scale factor
$t\overline{t}$ 0-lepton	1.36 ± 0.14
$t\overline{t}$ 1-lepton	1.12 ± 0.09
$t\overline{t}$ 2-lepton	0.99 ± 0.04
Wbb	0.83 ± 0.15
Wcl	1.14 ± 0.10
Zbb	1.09 ± 0.05
Zcl	0.88 ± 0.12

Systematics

Experimental S	Sources
----------------	---------

- Jet energy scale, resolution, flavour response
- b-tagging efficiency (10 parameters), charm and light jet rejection

 σ_{μ}

0.41

0.32

0.26

0.08

 $0.03 \\ 0.01$

0.07

0.04

0.04

0.03

Signal

Single-top

Diboson

Multijet

- MET trigger and reconstruction
- Lepton trigger and identification
- Luminosity (3%)

Source of uncertainty

Experimental uncertainties

Total

 $\begin{array}{c} \text{Jets} \\ E_{\mathrm{T}}^{\mathrm{miss}} \end{array}$

Leptons

b-tagging^(*)

Luminosity

Statistical

Systematic

Effect on signal strength $\boldsymbol{\mu}$

b-jets

c-jets

light jets

Modelling

	Signal	
	Cross section (scale)	$1\% (q\overline{q}), 50\% (qq)$
	Cross section (PDF)	$2.4\% (q\overline{q}), 17\% (gg)$
	Branching ratio	3.3 %
	Acceptance (scale)	1.5% – 3.3%
	3-jet acceptance (scale)	3.3% - 4.2%
	$p_{\rm T} v$ shape (scale)	S
	Acceptance (PDF)	2% - 5%
	$p_{\rm T} v$ shape (NLO EW correction)	S
	Acceptance (parton shower)	$8\%{-}13\%$
	Z+jets	
	Zl normalisation, $3/2$ -jet ratio	5%
	Zcl 3/2-jet ratio	26%
	Z+hf 3/2-jet ratio	20%
	Z + hf/Zbb ratio	12%
	$\Delta \phi(\text{jet}_1, \text{jet}_2), p_{\mathrm{T}} v, m_{bb}$	S
	W+jets	
	Wl normalisation, $3/2$ -jet ratio	10%
	Wcl, W +hf 3/2-jet ratio	10%
	Wbl/Wbb ratio	35%
	Wbc/Wbb, Wcc/Wbb ratio	12%
	$\Delta \phi(\text{jet}_1, \text{jet}_2), p_{\mathrm{T}} v, m_{bb}$	S
les	$t\bar{t}$	
0.07	3/2-jet ratio	20%
	$High/low-p_T v$ ratio	7.5%
0.06	Top-quark $p_{\rm T}, m_{bb}, E_{\rm T}^{\rm miss}$	S
0.00	Single top)
0.05	Cross section	4% (s-,t-channel), $7%$ (Wt)
0.04	Acceptance (generator)	3%– $52%$
	$m_{bb}, p_{\mathrm{T}}^{b_2}$	S
0.11	Diboson	·
0.08	Cross section and acceptance (scale)	3% - 29%
0.00	Cross section and acceptance (PDF)	$2\%{-}4\%$
0.05	m _{bb}	S
	Multijet	
0.04	0-, 2-lepton channels normalisation	100%
0.02	1-lepton channel normalisation	2%– $60%$
0.06	Template variations, reweighting	S
0.00		

Searches for H->bb at ATLAS	5
-----------------------------	---

W + jets

W + jets

Z-jets $t\bar{t}$

Z-jets $t\overline{t}$

Theoretical and modelling uncertaint

Floating normalisations

Background modelling

Results

Fitted signal strength parameters shown per year and per channel

Exclusion Limits, p₀

- Exclusion 1.2 times SM at m_H=125 GeV, expect 0.8 in absence of signal
- Probability p₀ to be described by background only is 8% at m_H=125 GeV with 0.5% expected
- Observed significance of 1.4σ for 2.6σ expected

What can we "see" in 8TeV data?

- Bin signal and background distributions in bins of expected S/fitted B.
 Data shown with statistical errors only.
- Similarly look at background subtracted (except VZ) m_{bb} distribution from dijet analysis weighted by S/B. Clear VZ peak at Z mass. Higgs signal shown for μ =1

Diboson VZ Cross Check

- Instead of training VH signal against background, train diboson as signal against other backgrounds (including VH)
- Perform a fit with μ_{VZ} and μ_{VH} left free...

VZ Results

- Signal strength of VZ fit. The value of μ_{VH} obtained in the VZ fit consistent with VH fit. The correlation between VH and VZ is low (3%) due to different m_{bb} and p_T^V distributions
- Observed (expected) significance for VZ 4.9(6.3)σ

Latest ATLAS Higgs Results (with H->bb!)

Searches for H->bb at ATLAS

Run 2 and Toward HL-LHC

Prospects for VH in Run 2

ATL-PHYS-PUB-2014-011

- Consider 2 upgrade scenarios 300fb⁻¹ with pile-up <µ>=60 and 3000fb⁻¹ with pile-up <µ>=140
- Particle level study uses parameterisations of resolution on upgraded detector including b-tagging upgrades
- Analysis uses one and two lepton analysis only, It will still be possible to use zero lepton channel with the use of topological calorimeter trigger.

Run 2 Prospects VH Results

300 fb⁻¹

3000 fb⁻¹

		One-lepton	Two-lepton	One+Two-lepton	On	e-lepton	Two-lepton	One+Two-lepton
Stat-only	Significance	2.7	3.0	4.1		7.7	7.5	10.7
	$\hat{\mu}_{\text{Stats}}$ error	+0.37 - 0.37	+0.33 - 0.33	+0.25 - 0.25	+0.	13 - 0.13	+0.14 - 0.13	+0.09 - 0.09
Theory-only	$\hat{\mu}_{\text{Theory}}$ error	+0.08 - 0.05	+0.08 - 0.05	+0.09 - 0.06	+0.0	09 - 0.07	+0.07 - 0.08	+0.07 - 0.07
	Significance	1.2	2.4	2.6		1.8	5.6	5.9
Scenario I	$\hat{\mu}_{\text{w/Theory}}$ error	+0.86 - 0.85	+0.44 - 0.43	+0.39 - 0.38	+0.5	56 - 0.54	+0.20 - 0.19	+0.19 - 0.19
10% JES	$\hat{\mu}_{\text{wo/Theory}}$ error	+0.85 - 0.85	+0.43 - 0.43	+0.38 - 0.38	+0.5	54 - 0.54	+0.18 - 0.18	+0.18 - 0.17
	Significance	1.4	-	2.8		3.2	-	6.4
Scenario II	$\hat{\mu}_{\text{w/Theory}}$ error	+0.71 - 0.70	-	+0.38 - 0.37	+0.	33 - 0.32	-	+0.18 - 0.17
5% JES	$\hat{\mu}_{\text{wo/Theory}}$ error	+0.70 - 0.70	-	+0.37 - 0.36	+0.	32 - 0.32	-	+0.16 - 0.16

- Combined analysis reaches S/\sqrt{B} of 2.6(5.9) for 300 (3000) fb⁻¹
- Analysis restricted to cut-based only, no extra b-tagging categories, no improved jet energy resolution, no extensions to boosted "fat-jets"
- Validation of analysis in comparison with 8 TeV analysis: combined expected significance of 1.14 to be compared with 2.5
- Estimate improvements of a more "performant" analysis: combined significance of 3.9σ(8.8σ) for 300 (3000)fb⁻¹
- So discovery in H->bb perhaps not so far away, combine with Run 1 data/CMS etc.

And now for something (slightly) different

Question: Is the Higgs observed at the LHC the standard model Higgs or the h from an extended sector?

- In the Standard Model (SM) only 1 complex Higgs doublet is responsible for electroweak symmetry breaking: there is one neutral CP even Higgs boson h
- Two Higgs Doublet Models (2HDM) simple extension beyond the SM Higgs sector to include two complex Higgs Doublets . Leads to five physical states H⁺, H⁻, A(CP-odd), H, h (CP-even)
- Entering a new realm of exploration: the couplings and decays rates of the observed Higgs boson to probe physics beyond the standard model

2HDM

- Higgs sector of 2HDM models described by 6 parameters: 4 Higgs masses, tan β(ratio of vacuum expectation values vev) and α mixing between the two neutral CP even states h,H
- Type I: One doublet couples to V("fermiophobic"), one to fermions
- Type II: "MSSM like" model, one doublet couples to up-type quarks, one to d-type quarks and leptons
- Type III: "Lepton-specific" model, Higgs bosons have same couplings to quarks as type I and to leptons as in type II
- Type IV: "Flipped" model, Higgs bosons have same couplings to quarks as in type II and to leptons as in type I
- In MSSM/2HDM type II models the couplings to b quarks and τ leptons are enhanced at high tan β

Direct A->Zh Searches from CMS

- For m_A in range $2m_h < m_A < 2m_t$, then A->Zh dominates
- Assume SM decays of h. Look at leptonic and diphoton decays

CMS-PAS-HIG-13-025

2HDM Limits

• Limits on 2HDM Type I and Type II in the tan β , cos($\beta - \alpha$) plane

Region below curves excluded. $\cos(\beta - \alpha) = 0$ is SM alignment

- Indirect search from ATLAS CONF-2014-010 where re-interpret SM Higgs coupling measurements in 2HDM models (less stringent around tan β=1)
- A->Zh (h->bb) channels can improve sensitivity. Same final state as 0/2 lepton VH analyses. Z->II better resolution in reconstructed m_A than Z->vv. Maybe results next time...

- Presented final run 1 results on VH(H->bb) searches at ATLAS
- Expected(observed) significance 2.6(1.4)σ
- Analysis validated using diboson measurement
- H->bb is a run 2 "measurement". First estimates at expected sensitivity from parameterisations of upgraded simulation. Every little bit of improvement in analysis helps – plus combination with run 1 data/CMS
- Higgs coupling to b-quarks sensitive area for BSM physics. E.g. 2HDM searches for A->Zh using same final state as 0/2 lepton VH analysis will improve constraints on model phase space
- Lots of hard work and many exciting results to come in run 2...

ATLAS Higgs group is ready!

ATLAS Higgs Workshop, Rome, April 2014

Back up

$m_H = 125 \text{ GeV at } \sqrt{s} = 8 \text{TeV}$							
Process	Cross section × BB [fb]	Acceptance [%]					
1100055		0-lepton	$1 ext{-lepton}$	2-lepton			
$q\overline{q} \to (Z \to \ell\ell)(H \to b\overline{b})$	14.9	—	1.3(1.1)	13.4(10.9)			
$gg \to (Z \to \ell \ell)(H \to b\overline{b})$	1.3	—	0.9 (0.7)	$10.5 \ (8.1)$			
$q\overline{q} \to (W \to \ell\nu)(H \to b\overline{b})$	131.7	0.3~(0.3)	4.2(3.7)	—			
$q\overline{q} \to (Z \to \nu\nu)(H \to b\overline{b})$	44.2	4.0(3.8)	—	—			
$gg \to (Z \to \nu\nu)(H \to b\overline{b})$	3.8	5.5(5.0)	—	_			

MVA(Dijet Mass)

2HDM Models

 Couplings of the light Higgs boson h to vector bosons, up-type, down-type quarks and charged leptons for 4 types of 2HDMs can be expressed as ratios expressed as functions of α (mixing angle) and tan β (ratio of vevs)

Coupling scale factor	Type I	Type II	Type III	Type IV
κ_V	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
K _u	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$
К _d	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$
Kl	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$