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Early Ideas 
• It was realized fairly early in the development of Quantum 

Chromodynamics that at sufficiently extreme conditions, 
quarks and gluons would become deconfined. Two papers 
appeared on this topic in 1975. 
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Quark-Gluon Plasma 
• At high temperature, or at high net 

baryon density, QCD indicates that 
matter undergoes a phase 
transition to a phase in which 
quarks and gluons can move freely 
(QGP). 

• Lattice QCD indicates that a fairly 
rapid transition occurs, which does 
not appear to be first order for 
ρ0~0. 

• Lattice calculations also show 
plateau comes about 15% below 
Stefan-Boltzmann limit – QGP does 
not behave like an ideal gas. 

• Current estimates are that phase 
transition occurs for T~170 MeV 
and ϵ~1 GeV fm-3 
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Observables 

Jets 
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What is “extreme”? 

• T of 170 MeV corresponds (in Kelvin) to around 
2×1012K (105 times hotter than sun). 

• Heavy ion QGPs created at the LHC are estimated 
to reach an energy density ϵ ~ 5 GeV fm-3, well 
above the transition temperature.  

• EXAMPLE Given that the annual energy 
consumption of the U.S. is about 1017 BTU, how 
much QGP would we need to hold this amount of 
energy? 
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Extreme conditions! 

• 1017 BTU = 6.6 
×1029 GeV , so this 
fits in a cube of size 
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ALICE 

• The ALICE collaboration (A Large Ion Collider 
Experiment) is dedicated principally to the 
study of heavy ion collisions. 

• The design of the detector is strongly based 
on tracking, and aims to be able to track and 
identify charged particles even in central ion-
ion collisions.  

• (dN/dy thought to be ~8000 at time design was made.) 

• Also electromagnetic calorimetry 
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Detector: 
Size: 16 x 26 meters 
Weight: 10,000 tons 

ALICE 

Technologies:18 
 Tracking:     7 
 PID:          6 
 Calo.:         5 
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ALICE – dedicated heavy-ion 
experiment at the LHC 

13 August 2012    Overview of ALICE   K.Safarik 

• particle identification (practically all known techniques) 

• extremely low-mass tracker ~ 10% of X0 
• excellent vertexing capability 
• efficient low-momentum tracking – down to ~ 100 MeV/c 

vertexing 
HMPID 

ITS TPC 

TRD 

TOF 
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REMINDER 

Previous Results 
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System Size? 

• Use boson interferometry 
(HBT) to estimate system 
size. 

• Measure 
– A(q) is distribution in 

momentum difference q=p1-
p2 for identical bosons 

– B(q) is the same, but 
measured for track pairs 
that cannot be correlated 
(e.g. from different events)  
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System size 

• Both radii (and therefore volume) and the decoupling time (τf) for the system 
(measure of “lifetime”) can be extracted. 

• Shows LHC collisions give rise to an interacting system that is larger (3×RHIC) and 
longer-lived (140% RHIC) than any previously. 
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Rapidity Density 

• The minimum bias rapidity density <dN/dη> at mid-rapidity rises with √s, both in pp and in PbPb.  
• pp multiplicity density was not described by Monte Carlo generators without tuning, and initially 

underpredicted the result. 
• Production per participant greater by factor 1.9 in PbPb 
• Monte Carlo generators tuned to pp reproduce PbPb well 
• Models based on initial-state gluon saturation density have mixed success, depending on specific 

assumption.  (Parton production in  a QGP is dominated by gg interactions.) 

September 26th  2012 O. Villalobos Baillie -University of Birmingham 25 

ALICE Collaboration EPJ C(2010) 65 111 
                                     EPJ C(2010) 68  89 
                                     EPJ C(2010) 68 345 
                                     PRL  (2010)105 252301 



Rapidity Density 
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Summary on Bulk Properties 

• Measurements of global variables of the PbPb system 
lead to information on the size and energy density of 
the system. 

• They indicate that the system created at the LHC has a 
volume considerably larger than that at RHIC, and lives 
longer. (Rout ≈ Rside ≈ 6 fm, Rlong ≈ 8 fm for low pT) 

• The energy density is also larger. The exact size 
depends on the value given for the “formation time” τ 
in the Bjorken formula. As the correct value for this 
parameter is difficult to ascertain, the results are often 
given for the product ϵτ. The other parameters in the 
formula are all unambiguous. 
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Flow Measurements 

• The system produced in a heavy ion collision is far 
from static, and is in a process of very rapid 
expansion. The way in which this takes place is 
described by “flow”. 

• Radial flow determines the modifications to the 
pT spectra coming from the expansion of the 
system. This gives an additional “boost” to the pT 
and leads to a hardening of the spectrum. 

• It is described by a “blast-wave” analysis. 
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Radial Flow 

• Blastwave fit using hydrodynamic model gets expansion 
velocity and freeze-out temperature. 

• Comparison with RHIC spectra shows flow effects are 
stronger at the LHC. 
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Anisotropic Flow 

• For non-central collisions, the 
collision geometry is not 
azimuthally symmetric.  

• This gives rise to an asymmetry 
in azimuthal distribution of 
particle production 

• Parameterise in terms of 
Fourier coefficients of φ 
distribution 

• “Elliptic flow” described by v2. 
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Elliptic Flow 
• Most straightforward distortion of system is that the 

overlap volume of the colliding nuclei is not spherical but 
(approximately) oval shaped, so better described by an 
ellipsoid. 

• The Fourier coefficient v2 is well suited for describing the 
distortion of a sphere into an ellipsoid. 

• Real fluids do not distort instantaneously. Degree of 
distortion depends on equation of state of the medium 
(EOS) and on the shear viscosity of the fluid η. 

• Hydrodynamic model represents the transformation of the 
intial state geometric azimuthal asymmetry into the final 
state momentum azimuthal asymmetry.  

• Fits in terms of such a model yield values of η. 
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Hydrodynamic Limit 

• The lower the viscosity, 
the higher the limiting 
value of v2. 

• Claim that QGP behaves 
like a “perfect fluid” 
comes from fact that as 
√s increases, the value 
approaches that from 
ideal hydrodynamics. 
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v2 vs √s for unidentified charged particles 
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Perfect Fluid? 

• Relevant quantity is not η but η/S, where S is 
the entropy of the system. 

• AdS/CFT sets lower limit on η/S 
• η/S ≥ ħ/(4πkB) ~ 0.02 Starinets 2002 
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Relativistic treatment gives η/S ~ <p>/σ, so small η/S implies large σ -  
strongly interacting fluid 
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η and η/S 

• Result is that for QGP η is in fact quite large 
• BUT η/S is very small. 
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University of Queensland “pitch drop” experiment  
where eight drops have been recorded since 1927, 
gives an η ~ 105-109 kPa s depending on temperature 
 
QGP η is even larger (1011 kPa s) 
 
BUT η/S is a bit smaller than liquid Helium – very close  
to “perfect fluid”. 
 

http://www.physics.uq.edu.au/physics_museum/pitchdrop.shtml 



nq scaling? 

• RHIC – relatively small differences in v2 by 
species – scaling in v2/nq 

• Quoted as key evidence for partonic flow 
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Flow Summary 

• At RHIC, flow effects were a very important part 
of the analysis. 

• “perfect fluid” and constituent quark scaling two very 
important arguments in partonic picture of medium. 

• Good hydrodynamic model essential to interpret 
results 

• Gives bridge from v2 to η 

• LHC results show even stronger flow effects than 
RHIC 

• Very low η/S seems to be confirmed. Strongly interacting 
QGP 
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Jet Quenching 
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Fragmentation Leading hadron 

Key prediction: jets are quenched 
• collisional energy loss (Bjorken) 
• radiative energy loss (Wang and Gyulassy) 

J.D. Bjorken Fermilab preprint PUB-82/59-THY (August 1982). 
X.-N. Wang and M. Gyulassy, Phys. Rev. Lett. 68 (1992) 1480 

radiated 
gluons 

pa = xa P 

pb = –xb P 

a 

b 

c 

d 

h 

heavy nucleus 

radiated 
gluons 



Nuclear Modification Factor RAA 

• One way to parameterise the absorption of jets in 
the medium is through RAA 
 
 
 

• Ratio gives 1 if production of given hadron in AA 
is described by scaling by number of collisions 
from production in pp – no absorption. 

• Differences from one indicate the jets have been 
absorbed (quenched). 
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RAA for charged particles 

• Effects at LHC are 
stronger than at RHIC as 
already seen for other 
phenomena 

• Strongest suppression 
for pT~7 GeV/c (RAA ~1/7) 

• For higher pT, RAA starts 
to rise again – energetic 
enough jets have a 
chance to break through. 
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UPDATES 2012 
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LHC Heavy-Ion running  
• Two heavy-ion runs at the LHC so far: 

• in 2010 – commissioning and the first data taking 
• in 2011 – already above nominal instant luminosity! 

 
• p–Pb run moved to beginning of next year 

• plan for ~ 30 nb-1 

• (for rare-probe statistics equivalent to ~0.15 nb-1 of Pb–Pb) 
 

• Followed in 2013 by Long Shutdown–1 (LS1) 

year system energy √sNN 
TeV 

integrated 
luminosity 

2010 Pb – Pb  2.76 ~ 10 µb-1 

2011 Pb – Pb  2.76 ~ 0.1 nb-1 

2013 p – Pb  5.02 ~ 30 nb-1 

QM11 
QM12 



HADROCHEMISTRY 
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Hadron Production 

• ALICE has now measured the spectra and 
yields in Pb-Pb collisions at √s=2.76 TeV for a 
large number of hadron species 

• π±, K, p, Λ, Ξ, Ω, φ - π0, η, D±, D0, D*, Ds, J/ψ, ψ’ 

• These allow a check to be made of the 
thermal nature of hadronic production, and 
also of the influence of particle flow. 
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Low-pT particle production 

13 August 2012    Overview of ALICE   K.Safarik 
47 arXiv:1208.1974 [hep-ex] 



Low-pT particle production 

13 August 2012    Overview of ALICE   K.Safarik 

Predicted temperature T=164 MeV 
A.Andronic, P.Braun-Munzinger, J.Stachel NP A772 167 
Thermal fit (w/o res.): T=152 MeV (χ2/ndf = 40/9) 
Ξ and Ω significantly higher than statistical model 

48 arXiv:1208.1974 [hep-ex] 



Low-pT particle production 

13 August 2012    Overview of ALICE   K.Safarik 

p/π and Λ/π ratios at LHC lower than at RHIC  
Hadronic re-interactions ? 
F.Becattini et al. 1201.6349 J.Steinheimer et al. 1203.5302 49 arXiv:1208.1974 [hep-ex] 



Two Thermal Fits 
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K* excluded: Bad fit (χ2/NDF = 39/10) p excluded: good fit (χ2/NDF = 9.3/8) 

Not enough p: absorption? 



Identified-particle v2 
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v2 for π, p, K±, K0
s, Λ, φ (not shown for Ξ, Ω) 

φ at low pT (<3 GeV/c) follows mass hierarchy 
– at higher pT joins mesons 
overall qualitative agreement with hydro up to pT 
1.5–3 GeV/c (π–p);  quantitative precision needs 
improvements – hadronic afterburner  
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Identified-particle v2 
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v2 for π, p, K±, K0
s, Λ, φ (not shown for Ξ, Ω) 

φ at low pT (<3 GeV/c) follows mass hierarchy 
– at higher pT joins mesons 
overall qualitative agreement with hydro up to pT 
1.5–3 GeV/c (π–p);  quantitative precision needs 
improvements – hadronic afterburner  

nq(mT)-scaling wose than at RHIC nq(pT)-scaling at pT > 1.2 GeV/c violation 10–20% 



HEAVY FLAVOUR 
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D meson RAA 

13 August 2012    Overview of ALICE   K.Safarik 
55 

Average D-meson RAA: 
– pT < 8 GeV/c hint of slightly less  
suppression than for light hadrons 
– pT > 8 GeV/c both (all) very similar 
no indication of colour charge dependence 



… adding Ds to charm RAA 
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… adding Ds to charm RAA 

13 August 2012    Overview of ALICE   K.Safarik 

Strong suppression (~ 4–5 ) 
at pT above 8 GeV/c  
 
Uncertainty will improve with  
future pp and Pb–Pb data taking 

57 
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D meson v2 
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Non-zero D meson v2 observed  
Comparable to that of light hadrons 
Expressed as event-plane dependent RAA 

Simultaneous description of RAA and v2 
c-quark transport coefficient in medium  



D Meson Behaviour 

• Case of D meson (or any other identified 
charmed hadron) is of interest. 

• In heavy ions, created isotropically  
• non-zero v2 indicates (calculable) interaction with medium, 

leading to anisotropy 
• RAA expected to be less than for light particles because of 

dead cone effect (gluon radiation suppressed at small angles 
because of destructive interference) NOT SEEN. 

• Heavy flavour case is a good test, as initial 
production is describable by pQCD (certainly for 
b, probably for c, though c may have thermal 
component at LHC energies. 
 

September 26th  2012 O. Villalobos Baillie -University of Birmingham 60 



JETS AND JET-QUENCHING 
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Near-side (jet-like) structure 

13 August 2012    Overview of ALICE   K.Safarik 
62 

Isolation of near-side peak: 
∆η–∆ϕ correlation with trigger 
Long-range (large ∆η)  correlation  
used as proxy for background 



Near-side (jet-like) structure 

13 August 2012    Overview of ALICE   K.Safarik 

N.Armesto et al., PRL 93, 242301 63 

ση 

σϕ 

Evolution of near-side-peak 
ση and σϕ with centrality: 
Strong ση increase for central 
collisions 
 
Interestingly: AMPT describes 
the data very well 
 
Influence of flowing medium? 



PID in jet structures 

13 August 2012    Overview of ALICE   K.Safarik 
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PYTHIA pp 

Near-side peak (after bulk subtraction): p/π ratio compatible with that of pp (PYTHIA) 
Bulk region: p/π ratio strongly enhanced – compatible with overall baryon enhancement 
Jet particle ratios not modified in medium? Could this still be surface bias? 
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Charged jet RAA and RCP 

13 August 2012    Overview of ALICE   K.Safarik 
66 

Strong jet suppression observed for jets reconstructed with charged particles 
– RAA (jet) is smaller than inclusive hadron RAA(h±) at similar parton pT 
– data are reasonably well described by JEWEL model  
K. Zapp, F. Krauss, U. Wiedemann, arXiv:1111.6838 
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THREE MORE THINGS 
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Direct photon production 

13 August 2012    Overview of ALICE   K.Safarik 

pT < 2 GeV/c  
~20% excess of direct photons 
pT > 4 GeV/c  
agreement with Ncoll-scaled NLO 
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Comparison with other experiments  
and models 

September 15th 2012 O. Villalobos Baillie - Diffraction 2012 72 

From van-der-Meer scan 

SD 

DD 

INEL 

Gotsman et al.  Phys. Rev. D85 (2012), arXiv:1208:0898  
Goulianos           Phys. Rev. D80 (2009) 111901 
Kaidalov et al., arXiv:0909.5156, EPJ C67 397 (2010) 
Ostapchenko, arXiv:1010.1869, PR D81 114028 (2010) 
Ryskin et al., EPJ C60 249 (2009), C71 1617 (2011) Diffraction 2012 - Lanzarote 
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Ultraperipheral J/ψ 
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J.D. Tapia Takaki Diffraction 2012 Lanzarote 
arXiv:1209.3715 



FUTURE PLANS 
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ALICE programme 

13 August 2012    Overview of ALICE   K.Safarik 

• ALICE heavy-ion programme approved for ~ 1 nb-1: 
• 2013–14 Long Shutdown 1 (LS1) 

•   completion of TRD and CALs 
• 2015 Pb–Pb  at √sNN = 5.1 TeV  
• 2016–17  (maybe combined in one year) Pb–Pb at √sNN = 5.5 TeV 
  
• 2018 Long Shutdown 2 (LS2) 
• 2019 probably Ar–Ar  high-luminosity run 
• 2020 p–Pb comparison run at full energy 
• 2021 Pb–Pb run to complete initial ALICE programme 
• 2022 Long Shutdown 3 (LS3) 

 
• This will improve statistical significance of our main results by a 

factor about 3  
• physics reach extended by the new energy and completion of TRD and 

CALs 
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ALICE UPGRADE 
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ALICE future plans  

13 August 2012    Overview of ALICE   K.Safarik 

Precision measurement of the QGP parameters at µb = 0 
to fully exploit scientific potential of the LHC – unique in: 

• large cross sections for hard probes 
• high initial temperature  

78 

• Main physics topics, uniquely accessible with the ALICE detector: 
 
• measurement of heavy-flavour transport parameters: 

• study of QGP properties via transport coefficients (η/s, q) 
 

• measurement of low-mass and low-pT di-leptons  
• study of chiral symmetry restoration 
• space-time evolution and equation of state of the QGP 

 
• J/ψ , ψ’, and χc states down to zero pT in wide rapidity range 

•   statistical hadronization versus dissociation/recombination 
 

ˆ 



ALICE upgrade 

13 August 2012    Overview of ALICE   K.Safarik 
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• luminosity upgrade – 50 kHz target minimum-bias rate for Pb–Pb 
• run ALICE at this high rate, inspecting all events 

 
• improved vertexing and tracking at low pT 
• preserve particle-identification capability 
• high-luminosity operation without dead-time 

 
• new, smaller radius beam pipe 
• new inner tracker (ITS) (performance and rate upgrade) 
• high-rate upgrade for the readout of the TPC, TRD, TOF, CALs, DAQ-HLT, 

Muon-Arm and Trigger detectors 
 

• target for installation and commissioning LS2 (2018)  
• collect more than 10 nb-1 of integrated luminosity 

• implies running with heavy ions for a few years after LS3 
• for core physics programme – factor > 100 increase in statistics 

• (maximum readout with present ALICE ~ 500 Hz) 
• for triggered probes increase in statistics by factor > 10 
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ΛC Measurement 

September 26th  2012 O. Villalobos Baillie -University of Birmingham 86 

• ΛC benchmark for ITS upgrade as regards heavy flavour. Currently not accessible 
• Both improvement in ITS precision and increase in statistics bring benefits. 
• Having both baryons and mesons in charm sector allows more detailed 

comparisons to be made. 



Summary 
• First results from Pb-Pb running (2011) showed that the main 

features of RHIC running are seen again, but are seen more strongly 
in LHC data 

• energy density higher than at RHIC 
• volume from HBT larger than at RHIC (~4500 fm3) 
• strong flow effects seen 
• Fluctuations are important. Understanding them may lead to re-assessment of 

some phenomena (Mach cone, “ridge”)  
• Higher statistics uncovers more detail. Some anomalies now clearly 

seen (proton yields, no “dead cone”, charm flow,…) 
• Starting to make sense. RHIC/LHC comparisons very fruitful 
• Time to plan for the future. 10-fold increase in statistics, focussing 

principally on heavy flavour to exploit ALICE advantages of good low 
pt coverage and excellent PID 
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