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The Standard Model H boson 
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The Standard Model of particle 
physics is an impressively successful 
theory. 
 
⇒ The Higgs mechanism was 
postulated in the mid-1960s to 
complete the Standard Model (SM) 
of particle interactions. 
 
The Higgs boson has been the 
missing piece of SM puzzle for the 
past half century! 

A long way since then ..   



The observation of a new particle  
4th July 2012 – The Discovery of the H  

H→γγ 

H→ZZ*→4l 
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And Recently a Nobel Prize 

“for the theoretical discovery of a mechanism 
that contributes to our understanding of the 
origin of mass of subatomic particles, and 
which recently was confirmed through the 
discovery of the predicted fundamental 
particle, by the ATLAS and CMS experiments 
at CERN’s Large Hadron Collider” 

8th  October 2013 
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LHC performance and ATLAS detector 
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A Toroidal LHC ApparatuS 

Magnets 2T solenoid, 3 air-core toroids 

Tracking silicon + transition radiation tracker 

EM Calorimetry  sampling LAr technology 

Hadronic  Calorimetry plastic scintillator (barrel) LAr (endcaps) 

Muon independent system with trigger capabilities  

Trigger 3 levels of trigger (first level hardwer) 



LHC performance and ATLAS detector 
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12/2012: 
23 fb-1  

@8 TeV 

2011 
5.6 fb-1  

@7 TeV 

2010 
0.05 fb-1  

@7 TeV 

Excellent LHC performance during 
Run I 

•  2011: 4.8 fb-1 at 7 TeV  
•  2012: 20.7 fb-1 at 8 TeV 

•  Challenging data taking condition  
→ Pile-up in 2012  
→ Maintain excellent performance by 
improved algorithms 

A Toroidal LHC ApparatuS  
Is a general purpose experiment  
More then 95% of data taking efficiency/
quality 



Lepton performance vs pileUp 
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Photon and Calorimeter performance 
•  Stable energy response vs number of primary vertex. 

•  Excellent stability of the EM calorimeter response 
•  Studied with Z,J/ψ→ee and W→eν events 
•  Energy scale at mZ known to ~0.3% and stable wrt pileup 
•  Uniformity ~1% (2.5% for 1.37< |η|<1.8)  

•  Photon efficiency stable with time and pile-up.  
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Jet - ET miss performance 
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Jet Calibration Overview
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•  JES uncertainties at 
the 1-2% level 
(absolute 
calibration) 

•  Missing ET well 
modeled: Pileup 
suppression 
improves ETMiss 
resolution 



SM Higgs production at the LHC  
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SM Higgs decay mode 
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The σBR for the different 
decay mode is highly mH 
dependent. 
 
@mH= 125 GeV several 
decay mode can be 
studied 
•  Bosonic mode: 

•  γγ, ZZ*, WW* 
•  Leptonic mode 

•  bb, ττ 

@125 GeV 



H→γγ 
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Giovanni Marchiori Higgs boson searches at ATLAS

Couplages à une boucle

• hgg : contribution dominante top quark 
• hγγ: contribution dominante: W, boucle de top signe opposé 
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Figure 3: Branching ratios of the SM Higgs boson (left) and total decay width (right) for Higgs-boson
masses accessible at LEP and before, calculated with Hdecay.
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Figure 4: Branching ratios of the SM Higgs boson (left, taken from Refs. [26, 50]), with the band
widths illustrating the parametric and theoretical uncertainties, and total decay width (right, taken
from Ref. [25]) in the Higgs-boson mass range accessible by the LHC.
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2.3.1 Decays into two photons

The partial width at leading order

The decay of the SM Higgs boson two into photons is mediated by W boson and heavy

charged fermion loops. The partial decay width can be cast into the form [80,133,134]

Γ (H → γγ) =
Gµ α2 M3

H

128
√

2 π3

∣∣∣∣∣
∑

f

NcQ
2
fA

H
1/2(τf ) + AH

1 (τW )

∣∣∣∣∣

2

(2.45)

with the form factors for spin–1
2 and spin–1 particles

AH
1/2(τ) = 2[τ + (τ − 1)f(τ)] τ−2

AH
1 (τ) = −[2τ 2 + 3τ + 3(2τ − 1)f(τ)] τ−2 (2.46)

and the function f(τ) defined as

f(τ) =

⎧
⎨

⎩

arcsin2
√

τ τ ≤ 1

−1

4

[
log

1 +
√

1 − τ−1

1 −
√

1 − τ−1
− iπ

]2

τ > 1
(2.47)

The parameters τi = M2
H/4M2

i with i = f, W are defined by the corresponding masses of

the heavy loop particles. The electromagnetic constant in the coupling should be taken at

the scale q2 = 0 since the final state photons are real.

Since the Hff̄ coupling is proportional to mf , the contribution of light fermions is

negligible so that in the SM with three families, only the top quark and the W boson

effectively contribute to the γγ width. If the Higgs boson mass is smaller than the WW

and f f̄ pair thresholds, the amplitudes are real and above the thresholds they are complex;

Fig. 2.15. Below thresholds, the W amplitude is always dominant, falling from AH
1 = −7 for

very small Higgs masses to AH
1 = −5 − 3π2/4 at the WW threshold; for large Higgs masses

the W amplitude approaches AH
1 → −2. Fermion contributions increase from AH

1/2 = 4/3

for small τf values to AH
1/2 ∼ 2 at the 2mf threshold; far above the fermion threshold, the

amplitude vanishes linearly in τf modulo logarithmic coefficients,

M2
H ≫ 4m2

f : AH
1/2(τf) → −[log(4τf) − iπ]2/(2τf)

M2
H ≪ 4m2

f : AH
1/2(τf) → 4/3 (2.48)

In Fig. 2.16, we display the partial decay width Γ(H → γγ). The width varies rapidly

from a few KeV for MH ∼ 100 GeV to ∼ 100 KeV for MH ∼ 300 GeV as a consequence

of the growth ∝ M3
H . The contribution of the W boson loop interferes destructively with

the quark loop and for Higgs masses of about 650 GeV, the two contributions nearly cancel

each other. The contribution of the b–loop is negligible, while the t quark contribution with

mt → ∞ is a good approximation for Higgs masses below the 2mt threshold.
75

-84/3

lundi 3 juin 2013

q,W

H→γγ: overview

• sensitive to couplings HWW and Htt; sensitive to BSM physics

• very good mass resolution and good yield (Sexp~400) but S/B~3%

• signature: 2 high-pT (>40, 30 GeV), well identified and isolated photons

• resonance in mγγ spectrum ~mH (σm/m ~ 1.3%, dominated by photon 
energy scale) 

• backgrounds: γγ (irreducible, ~75%), γj and jj (reducible, ~25%)

• smooth mγγ spectrum (simple analytical shape, parameters fitted on data) 

• production mode categories (couplings) + categories to enhance S/B

14

ATLAS-CONF-2013-012 



H→γγ 
•  Selection: 

•  ET(γ1)> 40 (20) GeV @8TeV (7TeV) 
•  ET(γ2)> 30 (20) GeV @8TeV (7TeV) 

•  Search narrow peak in mγγ  
•  Very good mass resolution ~1.7 GeV. 

•  Background: 
•  γγ [~75%], γ-jet and jet-jet [~25%]  

• Analysis: 
•  Simultaneous fit Signal + background to 

data 
•  S/B~3%. 
•  Classification 14 categories. 

•  Enhance sensitivity (~40%). 
•  Improve signal resolution (1.4-2.5 GeV). 
•  Optimized for coupling measurements  
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Η→γγ: results 
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•  Most significant deviation @ mH 126.5 GeV:  
•  Local significance: 7.4σ (4.1σ expected)  

•  Mass measurement: ���
126.8 ± 0.2 (stat) ± 0.7 (syst) GeV 
•  Systematics dominated by photon energy scale 

•  Production rate:���
μ = 1.65 ± 0.24 (stat)+0.25

−0.18 (syst)  
•  2.3σ deviation SM 

Signal strength
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H→ZZ*→ l+l-­l+l-­�
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Giovanni Marchiori Higgs boson searches at ATLAS

H→ZZ*→4l: overview

• sensitive to gauge boson coupling HZZ

• golden channel: very good S/B and mass resolution (but low yield)

• signature: 2 pairs of same-flavor, opposite-sign (OS) isolated leptons from PV
• min. lepton pT = 20 : 15 : 10 : 7 (6) GeV for e (μ)
• inv. masses: m12 in [50,106] GeV, m34 in [mmin.115] GeV, mmin(m4l) = 12-50 GeV
• resonance in m4l~mH (σm/m ~1.3-1.9% at mH=125 GeV including FSR + m12 =mZ)

• backgrounds: ZZ (irreducible, dominant), Z+jets and tt (reducible)

• m4l shapes: MC;   normalization: ZZ: theory, Z+jets, tt: data control regions

• production mode-sensitive categories for coupling measurements (see later)

• VBF-like: 2 leading jets with |Δη|>3 and mjj>350 GeV (VBF purity~60%, S/B~5)

• VH-like: 1 isolated lepton from PV with pT>8 GeV (VH purity~70%, S/B~3)

• ggF-like: the rest (S/B~1.5)
11

Higgs du Modèle Standard

• Doublet scalaire

• Brisure symétrie
• Masse bosons jauge 

et fermions

• Couplages 
proportionnels à la 
masse

5

1.1.3 The Higgs mechanism in the SM

In the slightly more complicated non–abelian case of the SM, we need to generate masses for

the three gauge bosons W± and Z but the photon should remain massless and QED must

stay an exact symmetry. Therefore, we need at least 3 degrees of freedom for the scalar

fields. The simplest choice is a complex SU(2) doublet of scalar fields φ

Φ =

(
φ+

φ0

)
, Yφ = +1 (1.25)

To the SM Lagrangian discussed in the previous subsection

LSM = −1

4
F a

µνF
µν
a − 1

4
BµνB

µν + L iDµγ
µ L + eR iDµγµ eR · · · (1.26)

we need to add the invariant terms of the scalar field part

LS = (DµΦ)†(DµΦ) − µ2Φ†Φ − λ(Φ†Φ)2 (1.27)

For µ2 < 0, the neutral component of the doublet field Φ will develop a vacuum expectation

value [the vev should not be in the charged direction to preserve U(1)QED]

⟨Φ ⟩0 ≡ ⟨ 0 |Φ | 0 ⟩ =

(
0
v√
2

)
with v =

(
−µ2

λ

)1/2

(1.28)

We can then make the same exercise as previously:

– write the field Φ in terms of four fields θ1,2,3(x) and H(x) at first order:

Φ(x) =

(
θ2 + iθ1

1√
2
(v + H) − iθ3

)
= eiθa(x)τa(x)/v

(
0

1√
2
(v + H(x) )

)
(1.29)

– make a gauge transformation on this field to move to the unitary gauge:

Φ(x) → e−iθa(x)τa(x) Φ(x) =
1√
2

(
0

v + H(x)

)
(1.30)

– then fully develop the term |DµΦ)|2 of the Lagrangian LS:

|DµΦ)|2 =
∣∣∣
(
∂µ − ig2

τa

2
W a

µ − ig1
1

2
Bµ

)
Φ

∣∣∣
2

=
1

2

∣∣∣∣

(
∂µ − i

2(g2W 3
µ + g1Bµ) − ig2

2 (W 1
µ − iW 2

µ)
− ig2

2 (W 1
µ + iW 2

µ) ∂µ + i
2(g2W 3

µ − g1Bµ)

) (
0

v + H

)∣∣∣∣
2

=
1

2
(∂µH)2 +

1

8
g2

2(v + H)2|W 1
µ + iW 2

µ |2 +
1

8
(v + H)2|g2W

3
µ − g1Bµ|2

– define the new fields W±
µ and Zµ [Aµ is the field orthogonal of Zµ]:

W± =
1√
2
(W 1

µ ∓ iW 2
µ) , Zµ =

g2W 3
µ − g1Bµ√
g2

2 + g2
1

, Aµ =
g2W 3

µ + g1Bµ√
g2

2 + g2
1

(1.31)
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1.1.3 The Higgs mechanism in the SM

In the slightly more complicated non–abelian case of the SM, we need to generate masses for

the three gauge bosons W± and Z but the photon should remain massless and QED must

stay an exact symmetry. Therefore, we need at least 3 degrees of freedom for the scalar

fields. The simplest choice is a complex SU(2) doublet of scalar fields φ

Φ =

(
φ+

φ0

)
, Yφ = +1 (1.25)

To the SM Lagrangian discussed in the previous subsection

LSM = −1

4
F a

µνF
µν
a − 1

4
BµνB

µν + L iDµγ
µ L + eR iDµγµ eR · · · (1.26)

we need to add the invariant terms of the scalar field part

LS = (DµΦ)†(DµΦ) − µ2Φ†Φ − λ(Φ†Φ)2 (1.27)

For µ2 < 0, the neutral component of the doublet field Φ will develop a vacuum expectation

value [the vev should not be in the charged direction to preserve U(1)QED]

⟨Φ ⟩0 ≡ ⟨ 0 |Φ | 0 ⟩ =

(
0
v√
2

)
with v =

(
−µ2

λ

)1/2

(1.28)

We can then make the same exercise as previously:

– write the field Φ in terms of four fields θ1,2,3(x) and H(x) at first order:

Φ(x) =

(
θ2 + iθ1

1√
2
(v + H) − iθ3

)
= eiθa(x)τa(x)/v

(
0

1√
2
(v + H(x) )

)
(1.29)

– make a gauge transformation on this field to move to the unitary gauge:

Φ(x) → e−iθa(x)τa(x) Φ(x) =
1√
2
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0

v + H(x)

)
(1.30)
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=
1

2
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µ + iW 2
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8
(v + H)2|g2W

3
µ − g1Bµ|2

– define the new fields W±
µ and Zµ [Aµ is the field orthogonal of Zµ]:

W± =
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(W 1

µ ∓ iW 2
µ) , Zµ =

g2W 3
µ − g1Bµ√
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, Aµ =
g2W 3

µ + g1Bµ√
g2

2 + g2
1

(1.31)
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– define the new fields W±
µ and Zµ [Aµ is the field orthogonal of Zµ]:

W± =
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2
(W 1

µ ∓ iW 2
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g2

2 + g2
1

(1.31)
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We will see in the course of this review that it will be appropriate to use the Fermi coupling

constant Gµ to describe the couplings of the Higgs bosons. A general form of the Higgs

couplings to fermions, massive gauge bosons as well as the Higgs self–coupling, which will

be useful when discussing extensions of the SM, is given in Fig. 1.2.

•H

f

f̄

gHff = mf/v = (
√

2Gµ)1/2 mf × (i)

•H

Vµ

Vν

gHV V = 2M2
V /v = 2(

√
2Gµ)1/2 M2

V × (−igµν)

•H

H

Vµ

Vν

gHHV V = 2M2
V /v2 = 2

√
2Gµ M2

V × (−igµν)

•H
H

H

gHHH = 3M2
H/v = 3(

√
2Gµ)1/2 M2

H × (+i)

•H

H

H

H

gHHHH = 3M2
H/v2 = 3

√
2Gµ M2

H × (+i)

Figure 1.2: The Higgs boson couplings to fermions and gauge bosons and the Higgs self–

couplings in the SM. The normalization factors of the Feynman rules are also displayed.

The propagator of the Higgs boson is simply given, in momentum space, by

∆HH(q) =
i

q2 − M2
H + iϵ

(1.53)

Note that in renormalizable Rξ gauges, the propagators of the neutral G0 ≡ w0 and charged

G± ≡ w± Goldstone bosons are given by

∆w0w0(q2) =
i

q2 − ξM2
Z + iϵ

, ∆w±w±(q2) =
i

q2 − ξM2
W + iϵ

(1.54)
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– and pick up the terms which are bilinear in the fields W±, Z, A:

M2
W W+

µ W−µ +
1

2
M2

ZZµZ
µ +

1

2
M2

AAµAµ (1.32)

The W and Z bosons have acquired masses, while the photon is still massless

MW =
1

2
vg2 , MZ =

1

2
v
√

g2
2 + g2

1 , MA = 0 (1.33)

Thus, we have achieved (half of) our goal: by spontaneously breaking the symmetry SU(2)L×
U(1)Y → U(1)QED, three Goldstone bosons have been absorbed by the W± and Z boson to

form their longitudinal components and to get their masses. Since the U(1)QED symmetry

is still unbroken, the photon which is its generator, remains massless as it should be.

Up to now, we have discussed only the generation of gauge boson masses; but what about

the fermion masses? In fact, we can also generate the fermion masses using the same scalar

field Φ, with hypercharge Y =1, and the isodoublet Φ̃ = iτ2Φ∗, with hypercharge Y =–1. For

any fermion generation, we introduce the SU(2)× U(1) invariant Yukawa Lagrangian

LF = −λe L̄ Φ eR − λd Q̄ Φ dR − λu Q̄ Φ̃ uR + h. c. (1.34)

and repeat the same exercise as previously. One obtains, e.g. in the case of the electron

LF = − 1√
2
λe (ν̄e, ēL)

(
0

v + H

)
eR + · · · = − 1√

2
(v + H) ēLeR + · · · (1.35)

The constant term in front of f̄LfR (and h.c.) is identified with the fermion mass

me =
λe v√

2
, mu =

λu v√
2

, md =
λd v√

2
(1.36)

Thus, with the same isodoublet Φ of scalar fields, we have generated the masses of both

the weak vector bosons W±, Z and the fermions, while preserving the SU(2)×U(1) gauge

symmetry, which is now spontaneously broken or hidden.

Before turning to the Higgs field itself, let us first briefly discuss for completeness the

interactions of fermions with the gauge bosons [which will be needed later].

The equations for the field rotation which lead to the physical gauge bosons, define the

Weinberg electroweak mixing angle sin θW

sin θW =
g2√

g2
1 + g2

2

=
e

g2
(1.37)

which can be written in terms of the W and Z boson masses as

sin2 θW ≡ 1 − cos2 θW = 1 − M2
W

M2
Z

(1.38)
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The W and Z bosons have acquired masses, while the photon is still massless
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form their longitudinal components and to get their masses. Since the U(1)QED symmetry

is still unbroken, the photon which is its generator, remains massless as it should be.

Up to now, we have discussed only the generation of gauge boson masses; but what about

the fermion masses? In fact, we can also generate the fermion masses using the same scalar

field Φ, with hypercharge Y =1, and the isodoublet Φ̃ = iτ2Φ∗, with hypercharge Y =–1. For

any fermion generation, we introduce the SU(2)× U(1) invariant Yukawa Lagrangian

LF = −λe L̄ Φ eR − λd Q̄ Φ dR − λu Q̄ Φ̃ uR + h. c. (1.34)

and repeat the same exercise as previously. One obtains, e.g. in the case of the electron

LF = − 1√
2
λe (ν̄e, ēL)

(
0

v + H

)
eR + · · · = − 1√

2
(v + H) ēLeR + · · · (1.35)

The constant term in front of f̄LfR (and h.c.) is identified with the fermion mass

me =
λe v√

2
, mu =

λu v√
2

, md =
λd v√

2
(1.36)

Thus, with the same isodoublet Φ of scalar fields, we have generated the masses of both

the weak vector bosons W±, Z and the fermions, while preserving the SU(2)×U(1) gauge

symmetry, which is now spontaneously broken or hidden.

Before turning to the Higgs field itself, let us first briefly discuss for completeness the

interactions of fermions with the gauge bosons [which will be needed later].

The equations for the field rotation which lead to the physical gauge bosons, define the

Weinberg electroweak mixing angle sin θW

sin θW =
g2√

g2
1 + g2

2

=
e

g2
(1.37)

which can be written in terms of the W and Z boson masses as

sin2 θW ≡ 1 − cos2 θW = 1 − M2
W

M2
Z

(1.38)
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•  Selection: 
•  pT

1,2,3,4 > 20, 15, 10, 7/6(e/μ) GeV 
•  m12 =50-106  GeV; 115 >  m34 > 12-50 GeV  

•  Main backgrounds:  
•  ZZ(*) (irreducible) 
•  Reducible: Zbb, Z+jets, tt with two leptons 

from b/q-jets (mH < 2mZ ) 

•  Golden channel: 
•  very good S/B = 1.6 for mH=125 GeV  
•  mass resolution ~1.9 GeV  
•  Signal acceptance x efficiency: 15-37 % 
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K. Nikolopoulos October 29th, 2013Higgs boson physics with ATLAS

Η→ZZ(*)→4l: Results

22

Signal ZZ(*) Other
Backgrounds Observed S/B

4µ 6.3±0.8 2.8±0.1 0.55±0.15 13 ~1.9

2µ2e 3.0±0.4 1.4±0.1 1.56±0.33 5 ~1.0

2e2µ 4.0±0.5 2.1±0.1 0.55±0.17 7 ~1.5

4e 2.6±0.4 1.2±0.1 1.11±0.28 6 ~1.1

120-130 GeV • Local significance:6.6σ (4.4σ)@mH=124.3GeV
• Mass: 124.3+0.6-0.5(stat)+0.5-0.3(syst) GeV
• Main systematic uncertanty: e/µ E/P scale
• Rate with respect to SM: 1.7+0.5−0.4 

• 1.5 ± 0.4 @ mH=125.5 GeV
Further categorizing the observed events:
• VBF-like (two jets in VBF topology)
• VH-like (events with additional leptons)
• ggF-like(all remaining events)
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-1Ldt =4.6 fb0=7 TeV: s

-1Ldt =20.7 fb0=8 TeV: s

•  Local significance:���
6.6σ(4.4σ exp) ���
@mH=124.3GeV 

•   Mass: ���
124.3+0.6

-0.5(stat)+0.5
-0.3(syst) 

GeV  
•  Main systematic uncertainty:���

 e/μ E/P scale  

•  Production rate with 
respect to SM: ���
μ= 1.7+0.5

−0.4  

The events are further categorized as: 
VBF-like (two jets in VBF topology) 
VH-like (events with additional leptons)  
ggF-like (all remaining events) 

à Coupling measurement consistent with SM 
expectation within 2σ  
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Giovanni Marchiori Higgs boson searches at ATLAS

H→ZZ*→4l: overview

• sensitive to gauge boson coupling HZZ

• golden channel: very good S/B and mass resolution (but low yield)

• signature: 2 pairs of same-flavor, opposite-sign (OS) isolated leptons from PV
• min. lepton pT = 20 : 15 : 10 : 7 (6) GeV for e (μ)
• inv. masses: m12 in [50,106] GeV, m34 in [mmin.115] GeV, mmin(m4l) = 12-50 GeV
• resonance in m4l~mH (σm/m ~1.3-1.9% at mH=125 GeV including FSR + m12 =mZ)

• backgrounds: ZZ (irreducible, dominant), Z+jets and tt (reducible)

• m4l shapes: MC;   normalization: ZZ: theory, Z+jets, tt: data control regions

• production mode-sensitive categories for coupling measurements (see later)

• VBF-like: 2 leading jets with |Δη|>3 and mjj>350 GeV (VBF purity~60%, S/B~5)

• VH-like: 1 isolated lepton from PV with pT>8 GeV (VH purity~70%, S/B~3)

• ggF-like: the rest (S/B~1.5)
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Higgs du Modèle Standard

• Doublet scalaire

• Brisure symétrie
• Masse bosons jauge 

et fermions

• Couplages 
proportionnels à la 
masse

5

1.1.3 The Higgs mechanism in the SM

In the slightly more complicated non–abelian case of the SM, we need to generate masses for

the three gauge bosons W± and Z but the photon should remain massless and QED must

stay an exact symmetry. Therefore, we need at least 3 degrees of freedom for the scalar

fields. The simplest choice is a complex SU(2) doublet of scalar fields φ

Φ =

(
φ+

φ0

)
, Yφ = +1 (1.25)

To the SM Lagrangian discussed in the previous subsection

LSM = −1

4
F a

µνF
µν
a − 1

4
BµνB

µν + L iDµγ
µ L + eR iDµγµ eR · · · (1.26)

we need to add the invariant terms of the scalar field part

LS = (DµΦ)†(DµΦ) − µ2Φ†Φ − λ(Φ†Φ)2 (1.27)

For µ2 < 0, the neutral component of the doublet field Φ will develop a vacuum expectation

value [the vev should not be in the charged direction to preserve U(1)QED]

⟨Φ ⟩0 ≡ ⟨ 0 |Φ | 0 ⟩ =

(
0
v√
2

)
with v =

(
−µ2

λ

)1/2

(1.28)

We can then make the same exercise as previously:

– write the field Φ in terms of four fields θ1,2,3(x) and H(x) at first order:

Φ(x) =

(
θ2 + iθ1

1√
2
(v + H) − iθ3

)
= eiθa(x)τa(x)/v

(
0

1√
2
(v + H(x) )

)
(1.29)

– make a gauge transformation on this field to move to the unitary gauge:

Φ(x) → e−iθa(x)τa(x) Φ(x) =
1√
2

(
0

v + H(x)

)
(1.30)

– then fully develop the term |DµΦ)|2 of the Lagrangian LS:

|DµΦ)|2 =
∣∣∣
(
∂µ − ig2

τa

2
W a

µ − ig1
1

2
Bµ

)
Φ

∣∣∣
2

=
1

2

∣∣∣∣

(
∂µ − i

2(g2W 3
µ + g1Bµ) − ig2

2 (W 1
µ − iW 2

µ)
− ig2

2 (W 1
µ + iW 2

µ) ∂µ + i
2(g2W 3

µ − g1Bµ)

) (
0

v + H

)∣∣∣∣
2

=
1

2
(∂µH)2 +

1

8
g2

2(v + H)2|W 1
µ + iW 2

µ |2 +
1

8
(v + H)2|g2W

3
µ − g1Bµ|2

– define the new fields W±
µ and Zµ [Aµ is the field orthogonal of Zµ]:

W± =
1√
2
(W 1

µ ∓ iW 2
µ) , Zµ =

g2W 3
µ − g1Bµ√
g2

2 + g2
1

, Aµ =
g2W 3

µ + g1Bµ√
g2

2 + g2
1

(1.31)
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(
−µ2

λ

)1/2

(1.28)

We can then make the same exercise as previously:

– write the field Φ in terms of four fields θ1,2,3(x) and H(x) at first order:

Φ(x) =

(
θ2 + iθ1

1√
2
(v + H) − iθ3

)
= eiθa(x)τa(x)/v

(
0

1√
2
(v + H(x) )

)
(1.29)

– make a gauge transformation on this field to move to the unitary gauge:

Φ(x) → e−iθa(x)τa(x) Φ(x) =
1√
2

(
0

v + H(x)

)
(1.30)

– then fully develop the term |DµΦ)|2 of the Lagrangian LS:

|DµΦ)|2 =
∣∣∣
(
∂µ − ig2

τa

2
W a

µ − ig1
1

2
Bµ

)
Φ

∣∣∣
2

=
1

2

∣∣∣∣

(
∂µ − i

2(g2W 3
µ + g1Bµ) − ig2

2 (W 1
µ − iW 2

µ)
− ig2

2 (W 1
µ + iW 2

µ) ∂µ + i
2(g2W 3

µ − g1Bµ)

) (
0

v + H

)∣∣∣∣
2

=
1

2
(∂µH)2 +

1

8
g2

2(v + H)2|W 1
µ + iW 2

µ |2 +
1

8
(v + H)2|g2W

3
µ − g1Bµ|2

– define the new fields W±
µ and Zµ [Aµ is the field orthogonal of Zµ]:

W± =
1√
2
(W 1

µ ∓ iW 2
µ) , Zµ =

g2W 3
µ − g1Bµ√
g2

2 + g2
1

, Aµ =
g2W 3

µ + g1Bµ√
g2

2 + g2
1

(1.31)
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We will see in the course of this review that it will be appropriate to use the Fermi coupling

constant Gµ to describe the couplings of the Higgs bosons. A general form of the Higgs

couplings to fermions, massive gauge bosons as well as the Higgs self–coupling, which will

be useful when discussing extensions of the SM, is given in Fig. 1.2.

•H

f

f̄

gHff = mf/v = (
√

2Gµ)1/2 mf × (i)

•H

Vµ

Vν

gHV V = 2M2
V /v = 2(

√
2Gµ)1/2 M2

V × (−igµν)

•H

H

Vµ

Vν

gHHV V = 2M2
V /v2 = 2

√
2Gµ M2

V × (−igµν)

•H
H

H

gHHH = 3M2
H/v = 3(

√
2Gµ)1/2 M2

H × (+i)

•H

H

H

H

gHHHH = 3M2
H/v2 = 3

√
2Gµ M2

H × (+i)

Figure 1.2: The Higgs boson couplings to fermions and gauge bosons and the Higgs self–

couplings in the SM. The normalization factors of the Feynman rules are also displayed.

The propagator of the Higgs boson is simply given, in momentum space, by

∆HH(q) =
i

q2 − M2
H + iϵ

(1.53)

Note that in renormalizable Rξ gauges, the propagators of the neutral G0 ≡ w0 and charged

G± ≡ w± Goldstone bosons are given by

∆w0w0(q2) =
i

q2 − ξM2
Z + iϵ

, ∆w±w±(q2) =
i

q2 − ξM2
W + iϵ

(1.54)

14

– and pick up the terms which are bilinear in the fields W±, Z, A:

M2
W W+

µ W−µ +
1

2
M2

ZZµZ
µ +

1

2
M2

AAµAµ (1.32)

The W and Z bosons have acquired masses, while the photon is still massless

MW =
1

2
vg2 , MZ =

1

2
v
√

g2
2 + g2

1 , MA = 0 (1.33)

Thus, we have achieved (half of) our goal: by spontaneously breaking the symmetry SU(2)L×
U(1)Y → U(1)QED, three Goldstone bosons have been absorbed by the W± and Z boson to

form their longitudinal components and to get their masses. Since the U(1)QED symmetry

is still unbroken, the photon which is its generator, remains massless as it should be.

Up to now, we have discussed only the generation of gauge boson masses; but what about

the fermion masses? In fact, we can also generate the fermion masses using the same scalar

field Φ, with hypercharge Y =1, and the isodoublet Φ̃ = iτ2Φ∗, with hypercharge Y =–1. For

any fermion generation, we introduce the SU(2)× U(1) invariant Yukawa Lagrangian

LF = −λe L̄ Φ eR − λd Q̄ Φ dR − λu Q̄ Φ̃ uR + h. c. (1.34)

and repeat the same exercise as previously. One obtains, e.g. in the case of the electron

LF = − 1√
2
λe (ν̄e, ēL)

(
0

v + H

)
eR + · · · = − 1√

2
(v + H) ēLeR + · · · (1.35)

The constant term in front of f̄LfR (and h.c.) is identified with the fermion mass

me =
λe v√

2
, mu =

λu v√
2

, md =
λd v√

2
(1.36)

Thus, with the same isodoublet Φ of scalar fields, we have generated the masses of both

the weak vector bosons W±, Z and the fermions, while preserving the SU(2)×U(1) gauge

symmetry, which is now spontaneously broken or hidden.

Before turning to the Higgs field itself, let us first briefly discuss for completeness the

interactions of fermions with the gauge bosons [which will be needed later].

The equations for the field rotation which lead to the physical gauge bosons, define the

Weinberg electroweak mixing angle sin θW

sin θW =
g2√

g2
1 + g2

2

=
e

g2
(1.37)

which can be written in terms of the W and Z boson masses as

sin2 θW ≡ 1 − cos2 θW = 1 − M2
W

M2
Z

(1.38)
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(1.36)

Thus, with the same isodoublet Φ of scalar fields, we have generated the masses of both

the weak vector bosons W±, Z and the fermions, while preserving the SU(2)×U(1) gauge

symmetry, which is now spontaneously broken or hidden.

Before turning to the Higgs field itself, let us first briefly discuss for completeness the

interactions of fermions with the gauge bosons [which will be needed later].

The equations for the field rotation which lead to the physical gauge bosons, define the

Weinberg electroweak mixing angle sin θW

sin θW =
g2√

g2
1 + g2

2

=
e

g2
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which can be written in terms of the W and Z boson masses as

sin2 θW ≡ 1 − cos2 θW = 1 − M2
W

M2
Z

(1.38)
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H→WW*→lνlν 

•  Signature: 
•  2 isolated opposite-sign leptons & large ETmiss    

•  Sensitive channel in wide mass range ~ 
125-180 GeV  (σ ~ 200 fb) 
•  Challenging: two missing ν → no mass 

reconstruction/peak 

•   Observable: mT 

•  Main backgrounds: WW, top, Z+jets, W+jets 
•  Excellent understanding of background in signal 

region à use signal-free control regions in data to 
constrain MC à use MC to extrapolate to the 
signal region 

•  Further categorization to improve sensitivity: 
•  Range dilepton mass: mll 

•  lepton flavors: μe, eμ, μμ, ee  
•  jet multiplicities: 0, 1, ≥2  
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H→WW*→lνlνresults 

•  Broad excess around 120 GeV 
•  significance: 3.8σ @125 GeV (3.7σ exp)  

•  Best fit of signal strength:���
μ = 1.01 ±0.31 @125 GeV 
•  Dominant contribution to the 

experimental systematic uncertainty from 
jet energy scale and resolution.  

•  Coupling measurement consistency 
with SM <1σ level  
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H→bb (VH→bb ) 
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Giovanni Marchiori Higgs boson searches at ATLAS

VH, H→bb: overview

21

• sensitive to HVV and to Hbb Yukawa coupling 

• signature: 2 b-jets (pT>40, 25 GeV) +
• Z→νν :  0l,   ETmiss>120 GeV,    pTmiss>30 GeV
• W→lν :  1l,   ETmiss>25 GeV,   40<mTlν<120 GeV 
• Z→ll  :  2l (l+l-),   ETmiss<60 GeV,   83<mll<99 GeV
• resonance in mbb = dijet invariant mass (corrected for µ within jets) - σm/m ~ 16%

• main backgrounds: top, V+b-jet(s)

• 16 Nj, pT(V) categories (in 2012 data)

• better S/B and mass resolution for larger pT(V)

• analysis validated on VZ, Z→bb (similar signature, 5x larger σ)

• main systematic uncertainties: b-tagging efficiency (9%), jet/ETmiss 
energy scale/resolution (4-20%), pT(V) model (5-8%), MC stat (3-8%)

Higgs du Modèle Standard

• Doublet scalaire

• Brisure symétrie
• Masse bosons jauge 

et fermions

• Couplages 
proportionnels à la 
masse

5

1.1.3 The Higgs mechanism in the SM

In the slightly more complicated non–abelian case of the SM, we need to generate masses for

the three gauge bosons W± and Z but the photon should remain massless and QED must

stay an exact symmetry. Therefore, we need at least 3 degrees of freedom for the scalar

fields. The simplest choice is a complex SU(2) doublet of scalar fields φ

Φ =

(
φ+

φ0

)
, Yφ = +1 (1.25)

To the SM Lagrangian discussed in the previous subsection

LSM = −1

4
F a

µνF
µν
a − 1

4
BµνB

µν + L iDµγ
µ L + eR iDµγµ eR · · · (1.26)

we need to add the invariant terms of the scalar field part

LS = (DµΦ)†(DµΦ) − µ2Φ†Φ − λ(Φ†Φ)2 (1.27)

For µ2 < 0, the neutral component of the doublet field Φ will develop a vacuum expectation

value [the vev should not be in the charged direction to preserve U(1)QED]

⟨Φ ⟩0 ≡ ⟨ 0 |Φ | 0 ⟩ =

(
0
v√
2

)
with v =

(
−µ2

λ

)1/2

(1.28)

We can then make the same exercise as previously:

– write the field Φ in terms of four fields θ1,2,3(x) and H(x) at first order:

Φ(x) =

(
θ2 + iθ1

1√
2
(v + H) − iθ3

)
= eiθa(x)τa(x)/v

(
0

1√
2
(v + H(x) )

)
(1.29)

– make a gauge transformation on this field to move to the unitary gauge:

Φ(x) → e−iθa(x)τa(x) Φ(x) =
1√
2

(
0

v + H(x)

)
(1.30)

– then fully develop the term |DµΦ)|2 of the Lagrangian LS:

|DµΦ)|2 =
∣∣∣
(
∂µ − ig2

τa

2
W a

µ − ig1
1

2
Bµ

)
Φ

∣∣∣
2

=
1

2

∣∣∣∣

(
∂µ − i

2(g2W 3
µ + g1Bµ) − ig2

2 (W 1
µ − iW 2

µ)
− ig2

2 (W 1
µ + iW 2

µ) ∂µ + i
2(g2W 3

µ − g1Bµ)

) (
0

v + H

)∣∣∣∣
2

=
1

2
(∂µH)2 +

1

8
g2

2(v + H)2|W 1
µ + iW 2

µ |2 +
1

8
(v + H)2|g2W

3
µ − g1Bµ|2

– define the new fields W±
µ and Zµ [Aµ is the field orthogonal of Zµ]:

W± =
1√
2
(W 1

µ ∓ iW 2
µ) , Zµ =

g2W 3
µ − g1Bµ√
g2

2 + g2
1

, Aµ =
g2W 3

µ + g1Bµ√
g2

2 + g2
1

(1.31)
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W± =
1√
2
(W 1

µ ∓ iW 2
µ) , Zµ =

g2W 3
µ − g1Bµ√
g2

2 + g2
1

, Aµ =
g2W 3

µ + g1Bµ√
g2

2 + g2
1

(1.31)
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We will see in the course of this review that it will be appropriate to use the Fermi coupling

constant Gµ to describe the couplings of the Higgs bosons. A general form of the Higgs

couplings to fermions, massive gauge bosons as well as the Higgs self–coupling, which will

be useful when discussing extensions of the SM, is given in Fig. 1.2.

•H

f

f̄

gHff = mf/v = (
√

2Gµ)1/2 mf × (i)

•H

Vµ

Vν

gHV V = 2M2
V /v = 2(

√
2Gµ)1/2 M2

V × (−igµν)

•H

H

Vµ

Vν

gHHV V = 2M2
V /v2 = 2

√
2Gµ M2

V × (−igµν)

•H
H

H

gHHH = 3M2
H/v = 3(

√
2Gµ)1/2 M2

H × (+i)

•H

H

H

H

gHHHH = 3M2
H/v2 = 3

√
2Gµ M2

H × (+i)

Figure 1.2: The Higgs boson couplings to fermions and gauge bosons and the Higgs self–

couplings in the SM. The normalization factors of the Feynman rules are also displayed.

The propagator of the Higgs boson is simply given, in momentum space, by

∆HH(q) =
i

q2 − M2
H + iϵ

(1.53)

Note that in renormalizable Rξ gauges, the propagators of the neutral G0 ≡ w0 and charged

G± ≡ w± Goldstone bosons are given by

∆w0w0(q2) =
i

q2 − ξM2
Z + iϵ

, ∆w±w±(q2) =
i

q2 − ξM2
W + iϵ

(1.54)
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– and pick up the terms which are bilinear in the fields W±, Z, A:

M2
W W+

µ W−µ +
1

2
M2

ZZµZ
µ +

1

2
M2

AAµAµ (1.32)

The W and Z bosons have acquired masses, while the photon is still massless

MW =
1

2
vg2 , MZ =

1

2
v
√

g2
2 + g2

1 , MA = 0 (1.33)

Thus, we have achieved (half of) our goal: by spontaneously breaking the symmetry SU(2)L×
U(1)Y → U(1)QED, three Goldstone bosons have been absorbed by the W± and Z boson to

form their longitudinal components and to get their masses. Since the U(1)QED symmetry

is still unbroken, the photon which is its generator, remains massless as it should be.

Up to now, we have discussed only the generation of gauge boson masses; but what about

the fermion masses? In fact, we can also generate the fermion masses using the same scalar

field Φ, with hypercharge Y =1, and the isodoublet Φ̃ = iτ2Φ∗, with hypercharge Y =–1. For

any fermion generation, we introduce the SU(2)× U(1) invariant Yukawa Lagrangian

LF = −λe L̄ Φ eR − λd Q̄ Φ dR − λu Q̄ Φ̃ uR + h. c. (1.34)

and repeat the same exercise as previously. One obtains, e.g. in the case of the electron

LF = − 1√
2
λe (ν̄e, ēL)

(
0

v + H

)
eR + · · · = − 1√

2
(v + H) ēLeR + · · · (1.35)

The constant term in front of f̄LfR (and h.c.) is identified with the fermion mass

me =
λe v√

2
, mu =

λu v√
2

, md =
λd v√

2
(1.36)

Thus, with the same isodoublet Φ of scalar fields, we have generated the masses of both

the weak vector bosons W±, Z and the fermions, while preserving the SU(2)×U(1) gauge

symmetry, which is now spontaneously broken or hidden.

Before turning to the Higgs field itself, let us first briefly discuss for completeness the

interactions of fermions with the gauge bosons [which will be needed later].

The equations for the field rotation which lead to the physical gauge bosons, define the

Weinberg electroweak mixing angle sin θW

sin θW =
g2√

g2
1 + g2

2

=
e

g2
(1.37)

which can be written in terms of the W and Z boson masses as

sin2 θW ≡ 1 − cos2 θW = 1 − M2
W

M2
Z

(1.38)
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Thus, with the same isodoublet Φ of scalar fields, we have generated the masses of both

the weak vector bosons W±, Z and the fermions, while preserving the SU(2)×U(1) gauge

symmetry, which is now spontaneously broken or hidden.

Before turning to the Higgs field itself, let us first briefly discuss for completeness the

interactions of fermions with the gauge bosons [which will be needed later].

The equations for the field rotation which lead to the physical gauge bosons, define the

Weinberg electroweak mixing angle sin θW

sin θW =
g2√
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2

=
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H→bb (VH→bb ) 
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•  Highest branching ratio (58% for 125 GeV) but large QCD bkg  
•  Associated production with W /Z to overcome dominant QCD background:  

•  3 final states: ZH->νν+bb, WH->lν+bb , ZH->ll+bb in the VH production mode  

VH(H → bb) Strategy

Associated production with W /Z to overcome dominant QCD background:

0 lepton

Loose lepton veto

Emiss
T > 120 GeV

QCD rejection cuts:
Emiss

T /jets angles

1 lepton

1 tight lepton

No extra leptons

QCD rejection cuts:
Emiss

T and mW
T

2 lepton

medium + loose lep

No extra leptons

mll window

Emiss
T < 60 GeV

Exactly 2 b-tagged jets (ϵB ≈ 70%;Rc ≈ 5;Rl ≈ 150)
∆Rbb cuts to improve modeling and increase sensitivity

3 or 5 pVT bins ⊗ 2/3 jets to exploit differing S/B and increasing significance

Carl Gwilliam UK Higgs Meeting, Edinburgh 4/33

•  Categories: to improve S/B and mass 
resolution (16%): 

•  26 2-b tags signal regions,  
•  31 bkg control regions 

•  Discriminant: mbb 
•  All regions fitted simultaneously 

•  Main backgrounds normalization free 
parameter in the fit. 

•  Fit validated on VZ production, 
observation Zàbb @ 4.8σ(5.1σ exp.) 



VH→bb results: 
•  mH=125 GeV���

95% CL exclusion limit 1.4 (1.3) x SM  

•  μ = 0.2 ± 0.5 (stat) ± 0.4 (syst)���
CMS : significance 2.1(2.1)σ for mH=125 GeV  

•  Overall compatibility with background (0) and 
Higgs (1) hypothesis:  p0 = 36% p1 = 11%  
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H→ττ 
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Giovanni Marchiori Higgs boson searches at ATLAS

VH, H→bb: overview

21

• sensitive to HVV and to Hbb Yukawa coupling 

• signature: 2 b-jets (pT>40, 25 GeV) +
• Z→νν :  0l,   ETmiss>120 GeV,    pTmiss>30 GeV
• W→lν :  1l,   ETmiss>25 GeV,   40<mTlν<120 GeV 
• Z→ll  :  2l (l+l-),   ETmiss<60 GeV,   83<mll<99 GeV
• resonance in mbb = dijet invariant mass (corrected for µ within jets) - σm/m ~ 16%

• main backgrounds: top, V+b-jet(s)

• 16 Nj, pT(V) categories (in 2012 data)

• better S/B and mass resolution for larger pT(V)

• analysis validated on VZ, Z→bb (similar signature, 5x larger σ)

• main systematic uncertainties: b-tagging efficiency (9%), jet/ETmiss 
energy scale/resolution (4-20%), pT(V) model (5-8%), MC stat (3-8%)

Higgs du Modèle Standard

• Doublet scalaire

• Brisure symétrie
• Masse bosons jauge 

et fermions

• Couplages 
proportionnels à la 
masse

5

1.1.3 The Higgs mechanism in the SM

In the slightly more complicated non–abelian case of the SM, we need to generate masses for

the three gauge bosons W± and Z but the photon should remain massless and QED must

stay an exact symmetry. Therefore, we need at least 3 degrees of freedom for the scalar

fields. The simplest choice is a complex SU(2) doublet of scalar fields φ

Φ =

(
φ+

φ0

)
, Yφ = +1 (1.25)

To the SM Lagrangian discussed in the previous subsection

LSM = −1

4
F a

µνF
µν
a − 1

4
BµνB

µν + L iDµγ
µ L + eR iDµγµ eR · · · (1.26)

we need to add the invariant terms of the scalar field part

LS = (DµΦ)†(DµΦ) − µ2Φ†Φ − λ(Φ†Φ)2 (1.27)

For µ2 < 0, the neutral component of the doublet field Φ will develop a vacuum expectation

value [the vev should not be in the charged direction to preserve U(1)QED]

⟨Φ ⟩0 ≡ ⟨ 0 |Φ | 0 ⟩ =

(
0
v√
2

)
with v =

(
−µ2

λ

)1/2

(1.28)

We can then make the same exercise as previously:

– write the field Φ in terms of four fields θ1,2,3(x) and H(x) at first order:

Φ(x) =

(
θ2 + iθ1

1√
2
(v + H) − iθ3

)
= eiθa(x)τa(x)/v

(
0

1√
2
(v + H(x) )

)
(1.29)

– make a gauge transformation on this field to move to the unitary gauge:

Φ(x) → e−iθa(x)τa(x) Φ(x) =
1√
2

(
0

v + H(x)

)
(1.30)

– then fully develop the term |DµΦ)|2 of the Lagrangian LS:

|DµΦ)|2 =
∣∣∣
(
∂µ − ig2

τa

2
W a

µ − ig1
1

2
Bµ

)
Φ

∣∣∣
2

=
1

2

∣∣∣∣

(
∂µ − i

2(g2W 3
µ + g1Bµ) − ig2

2 (W 1
µ − iW 2

µ)
− ig2

2 (W 1
µ + iW 2

µ) ∂µ + i
2(g2W 3

µ − g1Bµ)

) (
0

v + H

)∣∣∣∣
2

=
1

2
(∂µH)2 +

1

8
g2

2(v + H)2|W 1
µ + iW 2

µ |2 +
1

8
(v + H)2|g2W

3
µ − g1Bµ|2

– define the new fields W±
µ and Zµ [Aµ is the field orthogonal of Zµ]:

W± =
1√
2
(W 1

µ ∓ iW 2
µ) , Zµ =

g2W 3
µ − g1Bµ√
g2

2 + g2
1

, Aµ =
g2W 3

µ + g1Bµ√
g2

2 + g2
1

(1.31)
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We will see in the course of this review that it will be appropriate to use the Fermi coupling

constant Gµ to describe the couplings of the Higgs bosons. A general form of the Higgs

couplings to fermions, massive gauge bosons as well as the Higgs self–coupling, which will

be useful when discussing extensions of the SM, is given in Fig. 1.2.

•H

f

f̄

gHff = mf/v = (
√

2Gµ)1/2 mf × (i)

•H

Vµ

Vν

gHV V = 2M2
V /v = 2(

√
2Gµ)1/2 M2

V × (−igµν)

•H

H

Vµ

Vν

gHHV V = 2M2
V /v2 = 2

√
2Gµ M2

V × (−igµν)

•H
H

H

gHHH = 3M2
H/v = 3(

√
2Gµ)1/2 M2

H × (+i)

•H

H

H

H

gHHHH = 3M2
H/v2 = 3

√
2Gµ M2

H × (+i)

Figure 1.2: The Higgs boson couplings to fermions and gauge bosons and the Higgs self–

couplings in the SM. The normalization factors of the Feynman rules are also displayed.

The propagator of the Higgs boson is simply given, in momentum space, by

∆HH(q) =
i

q2 − M2
H + iϵ

(1.53)

Note that in renormalizable Rξ gauges, the propagators of the neutral G0 ≡ w0 and charged

G± ≡ w± Goldstone bosons are given by

∆w0w0(q2) =
i

q2 − ξM2
Z + iϵ

, ∆w±w±(q2) =
i

q2 − ξM2
W + iϵ

(1.54)
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– and pick up the terms which are bilinear in the fields W±, Z, A:

M2
W W+

µ W−µ +
1

2
M2

ZZµZ
µ +

1

2
M2

AAµAµ (1.32)

The W and Z bosons have acquired masses, while the photon is still massless

MW =
1

2
vg2 , MZ =

1

2
v
√

g2
2 + g2

1 , MA = 0 (1.33)

Thus, we have achieved (half of) our goal: by spontaneously breaking the symmetry SU(2)L×
U(1)Y → U(1)QED, three Goldstone bosons have been absorbed by the W± and Z boson to

form their longitudinal components and to get their masses. Since the U(1)QED symmetry

is still unbroken, the photon which is its generator, remains massless as it should be.

Up to now, we have discussed only the generation of gauge boson masses; but what about

the fermion masses? In fact, we can also generate the fermion masses using the same scalar

field Φ, with hypercharge Y =1, and the isodoublet Φ̃ = iτ2Φ∗, with hypercharge Y =–1. For

any fermion generation, we introduce the SU(2)× U(1) invariant Yukawa Lagrangian

LF = −λe L̄ Φ eR − λd Q̄ Φ dR − λu Q̄ Φ̃ uR + h. c. (1.34)

and repeat the same exercise as previously. One obtains, e.g. in the case of the electron

LF = − 1√
2
λe (ν̄e, ēL)

(
0

v + H

)
eR + · · · = − 1√

2
(v + H) ēLeR + · · · (1.35)

The constant term in front of f̄LfR (and h.c.) is identified with the fermion mass

me =
λe v√

2
, mu =

λu v√
2

, md =
λd v√

2
(1.36)

Thus, with the same isodoublet Φ of scalar fields, we have generated the masses of both

the weak vector bosons W±, Z and the fermions, while preserving the SU(2)×U(1) gauge

symmetry, which is now spontaneously broken or hidden.

Before turning to the Higgs field itself, let us first briefly discuss for completeness the

interactions of fermions with the gauge bosons [which will be needed later].

The equations for the field rotation which lead to the physical gauge bosons, define the

Weinberg electroweak mixing angle sin θW

sin θW =
g2√

g2
1 + g2

2

=
e

g2
(1.37)

which can be written in terms of the W and Z boson masses as

sin2 θW ≡ 1 − cos2 θW = 1 − M2
W

M2
Z

(1.38)
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– and pick up the terms which are bilinear in the fields W±, Z, A:

M2
W W+

µ W−µ +
1

2
M2

ZZµZ
µ +

1

2
M2

AAµAµ (1.32)

The W and Z bosons have acquired masses, while the photon is still massless

MW =
1

2
vg2 , MZ =

1

2
v
√

g2
2 + g2

1 , MA = 0 (1.33)

Thus, we have achieved (half of) our goal: by spontaneously breaking the symmetry SU(2)L×
U(1)Y → U(1)QED, three Goldstone bosons have been absorbed by the W± and Z boson to

form their longitudinal components and to get their masses. Since the U(1)QED symmetry

is still unbroken, the photon which is its generator, remains massless as it should be.

Up to now, we have discussed only the generation of gauge boson masses; but what about

the fermion masses? In fact, we can also generate the fermion masses using the same scalar

field Φ, with hypercharge Y =1, and the isodoublet Φ̃ = iτ2Φ∗, with hypercharge Y =–1. For

any fermion generation, we introduce the SU(2)× U(1) invariant Yukawa Lagrangian

LF = −λe L̄ Φ eR − λd Q̄ Φ dR − λu Q̄ Φ̃ uR + h. c. (1.34)

and repeat the same exercise as previously. One obtains, e.g. in the case of the electron

LF = − 1√
2
λe (ν̄e, ēL)

(
0

v + H

)
eR + · · · = − 1√

2
(v + H) ēLeR + · · · (1.35)

The constant term in front of f̄LfR (and h.c.) is identified with the fermion mass

me =
λe v√

2
, mu =

λu v√
2

, md =
λd v√

2
(1.36)

Thus, with the same isodoublet Φ of scalar fields, we have generated the masses of both

the weak vector bosons W±, Z and the fermions, while preserving the SU(2)×U(1) gauge

symmetry, which is now spontaneously broken or hidden.

Before turning to the Higgs field itself, let us first briefly discuss for completeness the

interactions of fermions with the gauge bosons [which will be needed later].

The equations for the field rotation which lead to the physical gauge bosons, define the

Weinberg electroweak mixing angle sin θW

sin θW =
g2√

g2
1 + g2

2

=
e

g2
(1.37)

which can be written in terms of the W and Z boson masses as

sin2 θW ≡ 1 − cos2 θW = 1 − M2
W

M2
Z

(1.38)
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H→ττ 
•  Sensitive to theτ Yukawa coupling 
•  Search includes the three different decay modes of 

theτ-pair:  
•  τlepτlep BR~12% → 2lepton 
•  τlepτhad BR~46% → 1 lepton 
•  τhadτhad BR~42% → 0 lepton 

•  Background: 
•  Z→ττ dominant irreducible, estimated from data  
•  “Fakes”: Multijet, W+jets, top (with fake taus) modeled by 

data  
•  “Other”: Dibosons and H->WW* modeled by MC  
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 Boostedhadoe + hadoµ ATLAS Preliminary

 = 8 TeVs Signal Region-1 L dt = 20.3 fb0

Mass reconstruction: 
 MMC (missing mass calculator) 

•  Analysis performed using an MVA approach 
(Boosted Decision Tree).   
•  BDT inputs based on resonance property, VBF 

topology (for VBF category) and event activity  
•  Two categories:  

•  VBF: 2 jets with a large Pseudorapidity separation 
•  Boosted: events failing VBF category, large pT 



H→ττresults 
•  Using a multivariate analysis ATLAS observes the 

first evidence of SM Higgs decaying to τ with a 
significance of 4.1σ (3.2σ exp.) 

•  The fitted signal strength parameter is:���
μ=1.43+0.31

-0.29(stat)+0.41
-0.30(syst) @mH125GeV 
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Summary of the H searches in ATLAS: 

•  Wide program of H analyses at ATLAS  
•  A lot of progress since the “Observation 

of a New Particle in the Search for the 
Standard Model Higgs Boson” 

•  With discovery well established  
→ Explore the newly discovered particle 
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Total uncertainty
µ on m 1±

(statistical)m
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Production 
mode 

ATLAS signal 
significance  

CMS signal 
significance 

H→γγ 7.4σ (4.1σ)  3.2σ (4.2σ) 

H→ZZ*→4l 6.6σ (4.4σ)  6.8σ, (7.2σ) 

H→WW* 3.8σ (3.7σ)  4.0σ (5.2σ) 

VH→bb  limit 1.4×SM  2.1σ (2.1σ) 

H→ττ 4.1σ (3.2σ)  3.4σ (3.6σ) 



Entering Precision Higgs Physics 
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•  Is it the Standard Model Higgs boson? 
•  Never conclude that it is the SM Higgs boson,we can only 

demonstrate that it is (in)consistent with that hypothesis  
•  Our “null hypothesis” is the SM Higgs sector: many predictions 

that can be tested: 
•  Mass (the only parameter not fixed by SM) 
•  Signal strength 
•  Production mechanisms 
•  Couplings 
•  Spin 



Mass combination 
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•  Higgs boson mass measurement using: 
•  H→γγ : 126.8 ± 0.2(stat)± 0.7 (syst) GeV  
•  H→ZZ→4l : 124.3+0.6

-0.5(stat)+0.5
-0.3(syst) GeV  

•  Combined mH: 
125.5 ± 0.2 (stat)+0.5

-0.6 (syst) GeV���
 
•  Results compatible at ~1.5% level 

(~2.4σ) 
•  Can depend critically on energy resolution 

modeling 
•  By moving ±1σ the main systematics 

(calibration, upstream material, pre-samples 
energy scale) consistency increases up to 8%���
 

CMS: mH = 125.7 ± 0.3 (stat) ± 0.3 (syst) GeV 

ATLAS-CONF-2013-014 



Signal Strength  
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Phys. Lett. B 726 (2013), pp. 88-119 

•  Higgs boson signal strength 
measurement 
•  Evaluated at mH =125.5 GeV 
•  using H→γγ, H→ZZ→4l and 

H→WW→lvlv  

• μ = 1.33+0.21
-0.18 

•  [including preliminary/partial H→bb/
H→ττ results gives 1.23±0.18]  

•  Consistency with SM within 7% 
•  Theory uncertainty (QCD scale and 

PDF+αs) comparable to 
experimental and statistical 
uncertainties. 

•  CMS combination (bosonic + fermionic):���
μ = 0.88 ± 0.14 
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H production modes 
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Phys. Lett. B 726 (2013), pp. 120-144 
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•  Study SM compatibility of production 
modes in each decay channel: 
•  Production process ratios (assuming SM 

ratio of production cross-section )  

•  Isolate VBF production process:  

•  3.3σ evidence for VBF production  
µV BF /µggF+ttH = 1.4+0.4

�0.3(stat)
+0.6
�0.4(sys)



H boson coupling measurement  
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Phys. Lett. B 726 (2013), pp. 88-119 

•  The measurement of the H boson couplings are implemented 
following the assumption: 
•  Single resonance @125.5 GeV,  
•  SM tensor structure (spin 0, CP-even) 
•  narrow width approximation  

Minimal fit:  
•  Assume no BSM contributions to ΓH  
•  Assume only two coupling scale 

factors: κF for all fermion couplings 
and κV for all vector boson 
couplings  

2D contours of Vector vs Fermion 
couplings compatibility with SM is 12% 
68% CL intervals: 
 

kF 2 [0.76, 1.18]

kV 2 [1.05, 1.22]



The test statistic to distinguish between the 2 hyp: is 
the ratio of profiled likelihoods (LLR) between the two 
hypotheses, (nuisance parameters profiled separately for 
each hypothesis):  
 
 
 
 
Exclusion of alternative model in favor of Standard 
Model 0+ hypothesis based on: 
 

Spin/parity measurement 
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•  Find observables in bosonic channels sensitive to 
spin and parity: 

•  Test several alternative spin-parity hypotheses JP ���

(0-,1+,1-2+) compared to SM hypothesis: 0+ and 
observe which is favored by data 

• Different spin-parity hypotheses Jalt
P(0-,

1+1-,2+) compared to JP = 0+ hypothesis.  
Models generated with JHU (Gao et al) 

• Test statistic: 

• Exclusion of alternative model in favour of 
Standard Model 0+ hypothesis based on:   

• Where p0 values are determined by integrating the distribution of the 
test-statistic q above the observed value. Typically, a value of 0.5 
(corresponding to the median) is expected if the model agrees  

• Different spin-parity hypotheses Jalt
P(0-,

1+1-,2+) compared to JP = 0+ hypothesis.  
Models generated with JHU (Gao et al) 

• Test statistic: 

• Exclusion of alternative model in favour of 
Standard Model 0+ hypothesis based on:   

• Where p0 values are determined by integrating the distribution of the 
test-statistic q above the observed value. Typically, a value of 0.5 
(corresponding to the median) is expected if the model agrees  

Where p0 values are determined by integrating the distribution of the test-statistic q above the 
observed value. Typically, a value of 0.5 (corresponding to the median) is expected if the model 
agrees 

Phys. Lett. B 726 (2013), pp. 120-144  

0+  0-  



Spin measurement combination 

•  On-shell X(J=1) → γγ not allowed by Landau-Yang theorem   
→ still worth testing with other decay modes  

•  J =2: KK graviton as a consistent effective description of a spin-2 particle���
At LO in minimal model, produced via gluon fusion, but 4% contribution 
of qq annihilation Higher-order QCD corrections could largely change this 
ratio  
→ consider models with different production modes admixture ( scan fqq between 0 
and 100%)  
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K. Nikolopoulos September 19th, 2013Discussion: Higgs Spin/CP at ATLAS

Combination

29

A small note on systematic uncertainties: 
- e/µ reconstruction,identification and trigger efficiencies and energy/momentum 
resolution uncertainties correlated between H→ZZ∗→4l and H→WW∗→lvlv
- e/γ energy scale correlated across all channels 
- effect of mass measurement uncertainty negligible
- overall impact (by comparing results w/ and w/o profiling) estimated to be <0.3σ
- Higgs boson pT spectrum small effect <0.1σ

Brief Article

The Author

September 17, 2013

H ! ZZ(⇤) ! 4` H ! WW (⇤) ! `⌫`⌫ H ! ��

0� X - -
1+ X X -
1� X X -
2+ X X X

1

Phys. Lett. B 726 (2013), pp. 120-144  



Η→γγ: SPIN analysis 
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Spin in H     γγ    
• Can’t measure polarization of 
photons: use cos θ*  
• Obtain background shape from 
sidebands, signal region between 
122 and 130 GeV 
• pT dependent cut on photons 
removes significant correlations 
between mγγ and cos θ*  

Background subtracted 
distributions: 
Data differ slightly, owing 
to the background being 
determined separately for 
each spin hypothesis  
  

Fit assuming 0+ Fit assuming 2+ 
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Phys. Lett. B 726 (2013), pp. 120-144  

K. Nikolopoulos October 29th, 2013Higgs boson physics with ATLAS

Η→γγ : Fit results 0+ vs 2+

40

Fit assuming 0+ Fit assuming 2+ (100% gg)

Data differ slightly, owing to the background being determined separately for each spin hypothesis

Background subtracted distributions

•  Discriminating variable: polar angle of the 
photons with respect to the Z-axis of the 
Collins-Soper frame  

•  Analysis optimized for the Spin measurement   
•  Η→γγ is a low S/B final state (inclusive ~3%) 

→ Simultaneous fit to mγγ and |cosθ*| in 
signal region & the bkg mγγ in side-bands.  



Η→γγ: SPIN analysis 

•  Discriminating variable: polar angle of the 
photons with respect to the Z-axis of the 
Collins-Soper frame  

•  Analysis optimized for the Spin measurement   
•  Η→γγ is a low S/B final state (inclusive ~3%) 

→ Simultaneous fit to mγγ and |cosθ*| in 
signal region & the bkg mγγ in side-bands.  
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Spin in H     γγ    
• Can’t measure polarization of 
photons: use cos θ*  
• Obtain background shape from 
sidebands, signal region between 
122 and 130 GeV 
• pT dependent cut on photons 
removes significant correlations 
between mγγ and cos θ*  
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The 2+ hypothesis 
is disfavor with to 
respect the 0+ 
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H→ZZ*→4l : SPIN analysis 
•  Ideal channel for spin/CP studies���

- Complete reconstruction of the event topology���
- Clean (S/B ~1 to 2 depending on final state)���
- Several observable depending on spin/CP available  

•  Use 5 production and decay angles as well as two 
invariant masses to build the Multivariate 
discriminant  

•  Two approaches:���
- Train BDT separately for each hypothesis���
- Use Matrix Element approach corrected for 
acceptance and pairing effects  
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Spin in H    ΖΖ   
• Full reconstruction of final state 
possible but have limited statistics 

• Use 5 production and decay angles 
as well as two invariant masses to 
build a BDT discriminant 
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H→ZZ*→4l : SPIN analysis 
•  Ideal channel for spin/CP studies���

- Complete reconstruction of the event topology���
- Clean (S/B ~1 to 2 depending on final state)���
- Several observable depending on spin/CP available  

•  Use 5 production and decay angles as well as two 
invariant masses to build the Multivariate 
discriminant  

•  Two approaches:���
- Train BDT separately for each hypothesis���
- Use ME corrected for acceptance and pairing 
effects  
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Spin in H    ΖΖ   
• Full reconstruction of final state 
possible but have limited statistics 

• Use 5 production and decay angles 
as well as two invariant masses to 
build a BDT discriminant 
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H→WW*→lνlν: SPIN analysis 
•  Large sample statistics but no clear peak 
•  Restricted to “different flavor” (eμ) events and no jets  
•  Use spin-sensitive variables (Δφll, mll, pT

ll, mT) to train BDTs 
and fit output of two BDTs (trained for each hypothesis). 
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Spin in H     WW   
• Large sample statistics but two 
neutrinos in the final state 

• Use spin-sensitive variables  (Δφll, 
mll, pTll, mT) to train BDTs and fit 
output of two BDTs (trained for each 
hypothesis)  

•  Two BDT classifiers are used: 
•  BDT0+: SM Higgs signal against 

the sum of all backgrounds 
•  BDTJP: JP signal against the sum 

of all backgrounds 
•  Perform 2D-fit in (BDT0+,BDTJP)  
•  pT spectrum uncertainties found 

to have small effect  

Phys. Lett. B 726 (2013), pp. 120-144  



H→WW*→lνlν: SPIN analysis 
•  Large sample statistics but no clear peak 
•  Restricted to “different flavor” (eμ) events and no jets  
•  Use spin-sensitive variables (Δφll, mll, pT

ll, mT) to train BDTs 
and fit output of two BDTs (trained for each hypothesis). 
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Spin in H     WW   
• Large sample statistics but two 
neutrinos in the final state 

• Use spin-sensitive variables  (Δφll, 
mll, pTll, mT) to train BDTs and fit 
output of two BDTs (trained for each 
hypothesis)  

Visualization of the results in the post-fit 
background-subtracted plots  
→Data more consistent with spin-0 with respect 
to spin-2  
 
 

The 2D distribution (BDT0,BDTJP) 
is remapped into a 1D distribution, 
with the bins ordered in increasing 
number of expected signal events. 
Empty bins (expected content 
<0.1) are removed.  

Phys. Lett. B 726 (2013), pp. 120-144  
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•  A note on systematic uncertainties in the combination: 
•  Common systematic correlated across the channels. 
•  effect of mass measurement uncertainty negligible 

•  overall impact (by comparing results w/ and w/o profiling) estimated to be <0.3σ  

•  Higgs boson pT spectrum small effect <0.1σ 
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0+/0- (ZZ): 97.8% CL  
0+/1+ (ZZ+WW): 99.97% CL 
0+/1- (ZZ+WW): 99.7% CL 
0+/2+ (γγ+ZZ+WW)>99.9% CL 
 

All spin hypotheses 
disfavored compared to 
0+ at > 95%  

Spin/Parity combination: 



Rare decays  
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Why search for rare Higgs decays?

I Properties of discovered Higgs boson consistent with
Standard Model hypothesis.

I But no definitive statement on its nature possible, yet.

I All possible decay channels need to be explored.

I Rare decay modes help to gain insight into its nature.
Even if channels are not expected to be sensitive, yet.

I Observation of such signatures in current data indicates
BSM Higgs sector.

This presentation:
I H ! Z�

I H ! µ+µ�

I H ! invisible

Sebastian Stern – MPI Munich 2/19

•  Properties of discovered Higgs boson consistent with Standard Model 
hypothesis. 

•  But no definitive statement on its nature possible, yet. 
•  All possible decay channels need to be explored. 
•  Rare decay modes help to gain insight into its nature. 

Even if channels are not expected to 
be sensitive, yet. 
→ Observation of such signatures in 
current data would indicates BSM 
Higgs sector 
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Rare decays: H→Zγ→llγ  
•  Loop-induced decay ���
⇒ sensitive to BSM particle 

•  Low yield (Sexp~15) and S/B 
(~0.25%) 

•  Good mass resolution ���
(σm/m~1.4%) 

•  Total bkg fitted to data ���
(Δm = mllγ – mll) 

•  no excess: μ<18.2(13.5) @95% 
CL for mH=125 GeV 
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H→Zγ→llγ

27

• low yield (Sexp~15) and S/B (~0.25%), good 
mass resolution (σm/m~1.4%)

• loop-induced decay ⇒ sensitive to BSM 
particles (and their quantum numbers)

• theory calculation does not include non-Z H→llγ 
⇒ investigate only Z-dominated phase space

• analysis of full 7+8 TeV data
• 2 same flavor, OS isolated leptons, pT>10 GeV, 

mll>mZ-10 GeV
• 1 isolated photon, ET>15 GeV, ΔRlγ>0.3

• main bkgs: SM Z+γ (~82%), Z+jets (~17%)
• total bkg fitted to data (smooth 
∆m=mllγ-mll)

• no excess: μ<18.2 @95% CL for mH=125 GeV 
(expected: 13.5)

Couplages à une boucle

• hgg : contribution dominante top quark 
• hγγ: contribution dominante: W, boucle de top signe opposé 
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Figure 3: Branching ratios of the SM Higgs boson (left) and total decay width (right) for Higgs-boson
masses accessible at LEP and before, calculated with Hdecay.
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Figure 4: Branching ratios of the SM Higgs boson (left, taken from Refs. [26, 50]), with the band
widths illustrating the parametric and theoretical uncertainties, and total decay width (right, taken
from Ref. [25]) in the Higgs-boson mass range accessible by the LHC.
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2.3.1 Decays into two photons

The partial width at leading order

The decay of the SM Higgs boson two into photons is mediated by W boson and heavy

charged fermion loops. The partial decay width can be cast into the form [80,133,134]

Γ (H → γγ) =
Gµ α2 M3

H

128
√

2 π3

∣∣∣∣∣
∑

f

NcQ
2
fA

H
1/2(τf ) + AH

1 (τW )

∣∣∣∣∣

2

(2.45)

with the form factors for spin–1
2 and spin–1 particles

AH
1/2(τ) = 2[τ + (τ − 1)f(τ)] τ−2

AH
1 (τ) = −[2τ 2 + 3τ + 3(2τ − 1)f(τ)] τ−2 (2.46)

and the function f(τ) defined as

f(τ) =

⎧
⎨

⎩

arcsin2
√

τ τ ≤ 1

−1

4

[
log

1 +
√

1 − τ−1

1 −
√

1 − τ−1
− iπ

]2

τ > 1
(2.47)

The parameters τi = M2
H/4M2

i with i = f, W are defined by the corresponding masses of

the heavy loop particles. The electromagnetic constant in the coupling should be taken at

the scale q2 = 0 since the final state photons are real.

Since the Hff̄ coupling is proportional to mf , the contribution of light fermions is

negligible so that in the SM with three families, only the top quark and the W boson

effectively contribute to the γγ width. If the Higgs boson mass is smaller than the WW

and f f̄ pair thresholds, the amplitudes are real and above the thresholds they are complex;

Fig. 2.15. Below thresholds, the W amplitude is always dominant, falling from AH
1 = −7 for

very small Higgs masses to AH
1 = −5 − 3π2/4 at the WW threshold; for large Higgs masses

the W amplitude approaches AH
1 → −2. Fermion contributions increase from AH

1/2 = 4/3

for small τf values to AH
1/2 ∼ 2 at the 2mf threshold; far above the fermion threshold, the

amplitude vanishes linearly in τf modulo logarithmic coefficients,

M2
H ≫ 4m2

f : AH
1/2(τf) → −[log(4τf) − iπ]2/(2τf)

M2
H ≪ 4m2

f : AH
1/2(τf) → 4/3 (2.48)

In Fig. 2.16, we display the partial decay width Γ(H → γγ). The width varies rapidly

from a few KeV for MH ∼ 100 GeV to ∼ 100 KeV for MH ∼ 300 GeV as a consequence

of the growth ∝ M3
H . The contribution of the W boson loop interferes destructively with

the quark loop and for Higgs masses of about 650 GeV, the two contributions nearly cancel

each other. The contribution of the b–loop is negligible, while the t quark contribution with

mt → ∞ is a good approximation for Higgs masses below the 2mt threshold.
75

-84/3

lundi 3 juin 2013

q,W

 Z     

ATLAS-CONF-2013-009 



•  Direct measurement Yukawa coupling to 2nd gen fermions. 
•  Low yield (Sexp~38) and S/B (~0.2%)  
•  Good mass resolution (σm/m~2%)  
•  S+B fit to mμμ 

•  no excess: μ<9.8 (8.2) @95% CL for mH=125 GeV  
 

Rare decays: H→μμ 
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H→µµ
• only channel to measure Yukawa couplings to 

2nd gen. fermions

• low yield (Sexp~38) and S/B (~0.2%), good 
mass resolution (σm/m~2%)

• may be enhanced in some BSM models (MSSM)

• analysis of full 8 TeV sample

• exactly 2 OS isolated high-pT (> 25, 15 GeV) µ

• pT,µµ>15 GeV (suppress DY bkg)

• two η categories: central (|η(µ1,2)|<1) vs rest: 
narrower mµµ resolution (18% improvement)

• S+B fit to mµµ (B=BW+exp, fitted on data)

• no excess: μ<9.8 @95% CL for mH=125 GeV 
(expected: 8.2)

28

Higgs du Modèle Standard

• Doublet scalaire

• Brisure symétrie
• Masse bosons jauge 

et fermions

• Couplages 
proportionnels à la 
masse

5

1.1.3 The Higgs mechanism in the SM

In the slightly more complicated non–abelian case of the SM, we need to generate masses for

the three gauge bosons W± and Z but the photon should remain massless and QED must

stay an exact symmetry. Therefore, we need at least 3 degrees of freedom for the scalar

fields. The simplest choice is a complex SU(2) doublet of scalar fields φ

Φ =

(
φ+

φ0

)
, Yφ = +1 (1.25)

To the SM Lagrangian discussed in the previous subsection

LSM = −1

4
F a

µνF
µν
a − 1

4
BµνB

µν + L iDµγ
µ L + eR iDµγµ eR · · · (1.26)

we need to add the invariant terms of the scalar field part

LS = (DµΦ)†(DµΦ) − µ2Φ†Φ − λ(Φ†Φ)2 (1.27)

For µ2 < 0, the neutral component of the doublet field Φ will develop a vacuum expectation

value [the vev should not be in the charged direction to preserve U(1)QED]

⟨Φ ⟩0 ≡ ⟨ 0 |Φ | 0 ⟩ =

(
0
v√
2

)
with v =

(
−µ2

λ

)1/2

(1.28)

We can then make the same exercise as previously:

– write the field Φ in terms of four fields θ1,2,3(x) and H(x) at first order:

Φ(x) =

(
θ2 + iθ1

1√
2
(v + H) − iθ3

)
= eiθa(x)τa(x)/v

(
0

1√
2
(v + H(x) )

)
(1.29)

– make a gauge transformation on this field to move to the unitary gauge:

Φ(x) → e−iθa(x)τa(x) Φ(x) =
1√
2

(
0

v + H(x)

)
(1.30)

– then fully develop the term |DµΦ)|2 of the Lagrangian LS:

|DµΦ)|2 =
∣∣∣
(
∂µ − ig2

τa

2
W a

µ − ig1
1

2
Bµ

)
Φ

∣∣∣
2

=
1

2

∣∣∣∣

(
∂µ − i

2(g2W 3
µ + g1Bµ) − ig2

2 (W 1
µ − iW 2

µ)
− ig2

2 (W 1
µ + iW 2

µ) ∂µ + i
2(g2W 3

µ − g1Bµ)

) (
0

v + H

)∣∣∣∣
2

=
1

2
(∂µH)2 +

1

8
g2

2(v + H)2|W 1
µ + iW 2

µ |2 +
1

8
(v + H)2|g2W

3
µ − g1Bµ|2

– define the new fields W±
µ and Zµ [Aµ is the field orthogonal of Zµ]:

W± =
1√
2
(W 1

µ ∓ iW 2
µ) , Zµ =

g2W 3
µ − g1Bµ√
g2

2 + g2
1

, Aµ =
g2W 3

µ + g1Bµ√
g2

2 + g2
1

(1.31)
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LS = (DµΦ)†(DµΦ) − µ2Φ†Φ − λ(Φ†Φ)2 (1.27)

For µ2 < 0, the neutral component of the doublet field Φ will develop a vacuum expectation

value [the vev should not be in the charged direction to preserve U(1)QED]

⟨Φ ⟩0 ≡ ⟨ 0 |Φ | 0 ⟩ =

(
0
v√
2

)
with v =

(
−µ2

λ

)1/2

(1.28)

We can then make the same exercise as previously:

– write the field Φ in terms of four fields θ1,2,3(x) and H(x) at first order:

Φ(x) =

(
θ2 + iθ1

1√
2
(v + H) − iθ3

)
= eiθa(x)τa(x)/v

(
0

1√
2
(v + H(x) )

)
(1.29)

– make a gauge transformation on this field to move to the unitary gauge:

Φ(x) → e−iθa(x)τa(x) Φ(x) =
1√
2

(
0

v + H(x)

)
(1.30)

– then fully develop the term |DµΦ)|2 of the Lagrangian LS:

|DµΦ)|2 =
∣∣∣
(
∂µ − ig2

τa

2
W a

µ − ig1
1

2
Bµ

)
Φ

∣∣∣
2

=
1

2

∣∣∣∣

(
∂µ − i

2(g2W 3
µ + g1Bµ) − ig2

2 (W 1
µ − iW 2

µ)
− ig2

2 (W 1
µ + iW 2

µ) ∂µ + i
2(g2W 3

µ − g1Bµ)

) (
0

v + H

)∣∣∣∣
2

=
1

2
(∂µH)2 +

1

8
g2

2(v + H)2|W 1
µ + iW 2

µ |2 +
1

8
(v + H)2|g2W

3
µ − g1Bµ|2

– define the new fields W±
µ and Zµ [Aµ is the field orthogonal of Zµ]:

W± =
1√
2
(W 1

µ ∓ iW 2
µ) , Zµ =

g2W 3
µ − g1Bµ√
g2

2 + g2
1

, Aµ =
g2W 3

µ + g1Bµ√
g2

2 + g2
1

(1.31)
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1.1.3 The Higgs mechanism in the SM

In the slightly more complicated non–abelian case of the SM, we need to generate masses for
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stay an exact symmetry. Therefore, we need at least 3 degrees of freedom for the scalar
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Φ =

(
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)
, Yφ = +1 (1.25)
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0
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)
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(
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λ

)1/2

(1.28)
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(v + H) − iθ3

)
= eiθa(x)τa(x)/v

(
0

1√
2
(v + H(x) )

)
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– make a gauge transformation on this field to move to the unitary gauge:

Φ(x) → e−iθa(x)τa(x) Φ(x) =
1√
2

(
0

v + H(x)

)
(1.30)

– then fully develop the term |DµΦ)|2 of the Lagrangian LS:

|DµΦ)|2 =
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(
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2(g2W 3
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) (
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)∣∣∣∣
2

=
1

2
(∂µH)2 +

1

8
g2

2(v + H)2|W 1
µ + iW 2

µ |2 +
1

8
(v + H)2|g2W

3
µ − g1Bµ|2

– define the new fields W±
µ and Zµ [Aµ is the field orthogonal of Zµ]:

W± =
1√
2
(W 1

µ ∓ iW 2
µ) , Zµ =

g2W 3
µ − g1Bµ√
g2

2 + g2
1

, Aµ =
g2W 3

µ + g1Bµ√
g2

2 + g2
1

(1.31)
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We will see in the course of this review that it will be appropriate to use the Fermi coupling

constant Gµ to describe the couplings of the Higgs bosons. A general form of the Higgs

couplings to fermions, massive gauge bosons as well as the Higgs self–coupling, which will

be useful when discussing extensions of the SM, is given in Fig. 1.2.

•H

f

f̄

gHff = mf/v = (
√

2Gµ)1/2 mf × (i)

•H

Vµ

Vν

gHV V = 2M2
V /v = 2(

√
2Gµ)1/2 M2

V × (−igµν)

•H

H

Vµ

Vν

gHHV V = 2M2
V /v2 = 2

√
2Gµ M2

V × (−igµν)

•H
H

H

gHHH = 3M2
H/v = 3(

√
2Gµ)1/2 M2

H × (+i)

•H

H

H

H

gHHHH = 3M2
H/v2 = 3

√
2Gµ M2

H × (+i)

Figure 1.2: The Higgs boson couplings to fermions and gauge bosons and the Higgs self–

couplings in the SM. The normalization factors of the Feynman rules are also displayed.

The propagator of the Higgs boson is simply given, in momentum space, by

∆HH(q) =
i

q2 − M2
H + iϵ

(1.53)

Note that in renormalizable Rξ gauges, the propagators of the neutral G0 ≡ w0 and charged

G± ≡ w± Goldstone bosons are given by

∆w0w0(q2) =
i

q2 − ξM2
Z + iϵ

, ∆w±w±(q2) =
i

q2 − ξM2
W + iϵ

(1.54)
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– and pick up the terms which are bilinear in the fields W±, Z, A:

M2
W W+

µ W−µ +
1

2
M2

ZZµZ
µ +

1

2
M2

AAµAµ (1.32)

The W and Z bosons have acquired masses, while the photon is still massless

MW =
1

2
vg2 , MZ =

1

2
v
√

g2
2 + g2

1 , MA = 0 (1.33)

Thus, we have achieved (half of) our goal: by spontaneously breaking the symmetry SU(2)L×
U(1)Y → U(1)QED, three Goldstone bosons have been absorbed by the W± and Z boson to

form their longitudinal components and to get their masses. Since the U(1)QED symmetry

is still unbroken, the photon which is its generator, remains massless as it should be.

Up to now, we have discussed only the generation of gauge boson masses; but what about

the fermion masses? In fact, we can also generate the fermion masses using the same scalar

field Φ, with hypercharge Y =1, and the isodoublet Φ̃ = iτ2Φ∗, with hypercharge Y =–1. For

any fermion generation, we introduce the SU(2)× U(1) invariant Yukawa Lagrangian

LF = −λe L̄ Φ eR − λd Q̄ Φ dR − λu Q̄ Φ̃ uR + h. c. (1.34)

and repeat the same exercise as previously. One obtains, e.g. in the case of the electron

LF = − 1√
2
λe (ν̄e, ēL)

(
0

v + H

)
eR + · · · = − 1√

2
(v + H) ēLeR + · · · (1.35)

The constant term in front of f̄LfR (and h.c.) is identified with the fermion mass

me =
λe v√

2
, mu =

λu v√
2

, md =
λd v√

2
(1.36)

Thus, with the same isodoublet Φ of scalar fields, we have generated the masses of both

the weak vector bosons W±, Z and the fermions, while preserving the SU(2)×U(1) gauge

symmetry, which is now spontaneously broken or hidden.

Before turning to the Higgs field itself, let us first briefly discuss for completeness the

interactions of fermions with the gauge bosons [which will be needed later].

The equations for the field rotation which lead to the physical gauge bosons, define the

Weinberg electroweak mixing angle sin θW

sin θW =
g2√

g2
1 + g2

2

=
e

g2
(1.37)

which can be written in terms of the W and Z boson masses as

sin2 θW ≡ 1 − cos2 θW = 1 − M2
W

M2
Z

(1.38)
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– and pick up the terms which are bilinear in the fields W±, Z, A:

M2
W W+

µ W−µ +
1

2
M2

ZZµZ
µ +

1

2
M2

AAµAµ (1.32)

The W and Z bosons have acquired masses, while the photon is still massless

MW =
1

2
vg2 , MZ =

1

2
v
√

g2
2 + g2

1 , MA = 0 (1.33)

Thus, we have achieved (half of) our goal: by spontaneously breaking the symmetry SU(2)L×
U(1)Y → U(1)QED, three Goldstone bosons have been absorbed by the W± and Z boson to

form their longitudinal components and to get their masses. Since the U(1)QED symmetry

is still unbroken, the photon which is its generator, remains massless as it should be.

Up to now, we have discussed only the generation of gauge boson masses; but what about

the fermion masses? In fact, we can also generate the fermion masses using the same scalar

field Φ, with hypercharge Y =1, and the isodoublet Φ̃ = iτ2Φ∗, with hypercharge Y =–1. For

any fermion generation, we introduce the SU(2)× U(1) invariant Yukawa Lagrangian

LF = −λe L̄ Φ eR − λd Q̄ Φ dR − λu Q̄ Φ̃ uR + h. c. (1.34)

and repeat the same exercise as previously. One obtains, e.g. in the case of the electron

LF = − 1√
2
λe (ν̄e, ēL)

(
0

v + H

)
eR + · · · = − 1√

2
(v + H) ēLeR + · · · (1.35)

The constant term in front of f̄LfR (and h.c.) is identified with the fermion mass

me =
λe v√

2
, mu =

λu v√
2

, md =
λd v√

2
(1.36)

Thus, with the same isodoublet Φ of scalar fields, we have generated the masses of both

the weak vector bosons W±, Z and the fermions, while preserving the SU(2)×U(1) gauge

symmetry, which is now spontaneously broken or hidden.

Before turning to the Higgs field itself, let us first briefly discuss for completeness the

interactions of fermions with the gauge bosons [which will be needed later].

The equations for the field rotation which lead to the physical gauge bosons, define the

Weinberg electroweak mixing angle sin θW

sin θW =
g2√

g2
1 + g2

2

=
e

g2
(1.37)

which can be written in terms of the W and Z boson masses as

sin2 θW ≡ 1 − cos2 θW = 1 − M2
W

M2
Z

(1.38)
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•  While the invisible branching fraction for a 
SM Higgs boson is too small to be accessible 
→ Observation would be direct indication of 
New Physics!  
•  Higgs couplings to non SM stable or long lived 

particles is excellent way to search for new 
physics, in particular Dark Matter through so 
called Higgs portal models.  

•  Search for invisible decays of the Higgs 
boson produced in association with a Z 
boson. 

•  The search performed by looking for excess 
in events with 2 leptons and high ET miss 

•  no excess ⇒ σ*BRinv (<35 fb) for 
mH=115-300 GeV ���
and BRinv <65% obs (84% exp) @ 125 GeV  

H to invisible 
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Conclusion 
•  Wide program of H analyses at ATLAS  

•  A SM-like Higgs boson with mass ~125 GeV was 
discovered using LHC Run1 data  

•  Measured spin/parity (0+) and couplings to SM 
particles are consistent with SM expectations���
No evidence of non-standard properties  
•  No invisible decays 
•  No hint of enhancements in suppressed channels 

(μμ, Zγ)  
•  No hint of additional 2HDM bosons with larger masses  

•  This particle opens up a fabulous new area of 
physics  

•  Look forward LHC Run II/III and HL-LHC 
•  Factor ~5–6 more luminosity compared to Run 1  
•  Factor ~2.1– 4.7 increase in cross section from 8TeV to 

14TeV  
•  Up to a factor of ~4–5 improvement in statistical 

sensitivity 
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BACKUP  
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LHC and ATLAS performance 
Excellent LHC performance during Run I 

•  2011: 4.8 fb-1 at 7 TeV  
•  2012: 20.7 fb-1 at 8 TeV 

•  Challenging data taking condition  
→ Pile-up in 2012  
→ Maintain excellent performance by improved 
algorithms 
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The Standard Model H boson 
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The Standard Model of particle physics is an 
impressively successful theory. 

In the SM the electromagnetic and weak 
interactions are unified through the 
symmetry SU(2)L⊗U(1)Y, where the carriers 
are massless.���
→ This symmetry is spontaneously broken 
through the non-vanishing vacuum 
expectation value of the Higgs field���
→ Three of the four degrees of freedom of 
the Higgs field are becoming the 
longitudinal polarizations of the vector 
bosons, the fourth is the Higgs boson.  
 

⇒ The Higgs boson is a particle postulated 
in the mid-1960s to complete the Standard 
Model (SM) of particle interactions. 

A long way since then ..   
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Distinctive signature: 
• two forward jets (tagging jets) 
• little (jet) activity in  
  central region (central jet veto) 
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H→γγ 
•  Simple final state: 2 high-pT isolated 

photons  
•  ET (γ1, γ2) > 40, 30 GeV (20/20 for 7 TeV) 

•  Search for narrow peak in mγγ  
•  Very good mass resolution ~1.7 GeV.  

•  Stable with time and pile-up.  
•  Main background: γγ continuum 

•  γγ [~75%], γ-jet and jet-jet [~25%]  
•  Background extrapolated from side-bands in data: 

•  S/B~3% in mass window ~125 GeV with 
90% signal  

•  To enhance the sensitivity (~40%): 
classification into 14 categories with 
different S/B (1-60%) and different 
resolutions (1.4-2.5 GeV) --> optimized for 
coupling measurements  
•  background model for each category chosen on 

MC to minimize signal bias. 
•  Simultaneous fit Signal + background 

•  Signal strength and H mass are free parameter 
on the fit 
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Η→γγ: results 
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•  Most significant deviation from 
background only hypothesis at mH 
=126.5 GeV:  

•  Local significance: 7.4σ (with 
4.1σ expected) @ mH=126.5 GeV 
•  Inclusive analysis: 6.1σ (with 2.9σ 

expected) 
•  Mass measurement: ���

126.8 ± 0.2 (stat) ± 0.7 (syst) GeV 
•  Systematics completely dominated 

by the photon energy scale 
uncertainty (mainly from the 
extrapolation of the photon energy 
scale from Z->ee , presampler 
energy scale and material 
modeling)  

•  Rate with respect to Standard Model:���
μ = 1.65 ± 0.24 (stat)+0.25

−0.18 (syst)  
•  2.3σ deviation from the Standard 

Model 
•  2.0σexcess for the VBF production 

mH=126.5 GeV  
•  Couplings in agreement with SM 

expectation within 2σ  Signal strength
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A Bit of History 
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Figure 1: The local probability p0 (capped) for a background-only experiment to be more signal-like than

the observation as a function of mH presented at the EPS-HEP conference in Grenoble in Summer 2011

(CERN-PH-EP-2011-112), (a) in the low mass range and (b) in the full search domain. The dashed curve

shows the median expected local p0 under the hypothesis of a Standard Model Higgs boson production

signal at that mass. The horizontal dashed lines indicate the p-values corresponding to significances of

1σ to 6σ. 2

Venice, March 7, 2013 Marko Mikuž: The Higgs Hunt with ATLAS 53 
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Figure 2: In addition to the previous Figure, the local probability p0 (capped) for a background-only

experiment to be more signal-like than the observation as a function of mH presented at December 2011

CERN council meeting (ATLAS-CONF-2011-163) (a) in the low mass range and (b) in the full search

domain. The dashed curve shows the median expected local p0 under the hypothesis of a Standard

Model Higgs boson production signal at that mass. The horizontal dashed lines indicate the p-values

corresponding to significances of 1σ to 6σ. 3
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Figure 3: In addition to the previous Figure, the local probability p0 (uncapped) for a background-only

experiment to be more signal-like than the observation as a function of mH reported in the spring 2012

Phys. Rev. D publication (Phys. Rev. D86 (2012) 032003) (a) in the low mass range and (b) in the

full search domain. The dashed curve shows the median expected local p0 under the hypothesis of a

Standard Model Higgs boson production signal at that mass. The horizontal dashed lines indicate the

p-values corresponding to significances of 1σ to 6σ.4
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Figure 4: In addition to the previous Figure, the local probability p0 (uncapped) for a background-only

experiment to be more signal-like than the observation as a function of mH presented at the summer

2012 ICHEP conference in Melbourne (ATLAS-CONF-2012-093) (a) in the low mass range and (b) in

the full search domain. The dashed curve shows the median expected local p0 under the hypothesis of

a Standard Model Higgs boson production signal at that mass. The horizontal dashed lines indicate the

p-values corresponding to significances of 1σ to 6σ.5
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Figure 5: In addition to the previous Figure, the local probability p0 (uncapped) for a background-only

experiment to be more signal-like than the observation as a function of mH reported in Phys. Lett. B 716

(2012) 1-29, (a) in the low mass range and (b) in the full search domain. The dashed curve shows the

median expected local p0 under the hypothesis of a Standard Model Higgs boson production signal at

that mass. The horizontal dashed lines indicate the p-values corresponding to significances of 1σ to 6σ.
6
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2. Higgs couplings to gauge bosons (gV) and fermions (gF)
3. Higgs boson quantum numbers JPC and tensor structure
4. Higgs potential - Higgs self-coupling (λ)

Higgs Boson Property Measurements

2

K. Cranmer

The Standard Model Lagrangian - Higgs sector

Couplings to 
EW gauge bosons

Higgs
self-couplings

Couplings to 
fermions
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The ultimate goal of particle physics of today is to fix the Standard Model 
(SM) Lagrangian and find the physics beyond the Standard Model (BSM).

LSM = DµH†DµH + µ2H†H � �
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Η→γγ: Event Categories  
•  To enhance the sensitivity (~40%): 

classification into 14 categories with 
different S/B (1-60%) and different 
resolutions (1.4-2.5 GeV) --> optimized 
for coupling measurements  

•  background model for each category 
chosen on MC to minimize signal bias 
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di-photon selection

One-lepton
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 significancemiss
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Low-mass two-jet
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High-mass two-jet

VBF

tight
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-conversiond-
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ATLAS Preliminary
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H→ττ: Embedding 

9 

Z��� Simulation: Embedding 

!  Embedding: all properties of  
a Z���event except the 
taus are modeled by Z� 
��data  

!  Remove � from data 
!  Simulate � including spin 

!  Add � in place of  the �  

!  Major advantages of  
embedding: Z-boson 
kinematics, jets, MET 
resolution, pile-up, and 
VBF/EWK production are 
directly modeled by data 
 

Z→μμ#from#data# τ##from#Z→ττ##MC#

Z→ττ##with#event#
proper=es#from#data#

μ1#

μ2#

τ1#

τ2#

τ1#

τ2#
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H→ττ: Inputs to the BDT  

12 

Inputs to the BDT 
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H→ττ 

Leading Systematic Uncertainties: 

!  Leading theory uncertainty is due to effect of  top, bottom, charm quark masses in gluon-gluon 
loop, affecting PT(H) spectrum in gluon fusion produced H (~30%) 

!  Working with the LHC Higgs Cross Section group to come up with the best way to treat these 
theory systematics  

!  Leading experimental uncertainties are due to background normalizations (up to ~20%)   

15 

Signal strength µ = σ measured

σ SM
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H→ττ: Results BDT score 

•  The log(Signal/Bkgd) for each 
event’s BDT-score bin  
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14 

Results 

!  The log(Signal/Bkgd) for each 
event’s BDT-score bin 

Numbers of  events in highest  
BDT-score bin  

Lep-lep Lep-had Had-had 

Signal 5.7±1.7 8.7±2.5 8.8±2.2 

Bkgd 13.5±2.4 8.7±2.4 11.8±2.6 

Data 19 18 19 

Signal 2.6±0.8 8.0±2.5 3.6±1.1 

Bkgd 20.2±1.8 32±4 11.2±1.9 

Data 20 34 15 
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Spin/parity measurement 
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ATLAS
 4lA ZZ* AH 

-1Ldt = 4.6 fb0 = 7 TeV  s
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0+/0- (only ZZ): 97.8% CL  
0+/1+ (ZZ +WW): 99.97% CL 
0+/1- (ZZ+WW): 99.7% CL 
0+/2+ (γγ+ZZ+WW)>99.9% CL 
 
All spin hypotheses disfavored 
compared to 0+ at > 95%  

Phys. Lett. B 726 (2013), pp. 120-144  

•  Find observables in bosonic channels sensitive to 
spin and parity 

•  Test several alternative spin-parity hypotheses JP ���

(0-,1+,1-2+) compared to SM hypothesis: 0+ and 
observe which is favored by data 

•  Production modes  
•  spin-2 : test production mechanism via combination of ggF & 

qqbar annihilation 
•  spin-1 :signal produce via qqbar annihilation (ggF forbidden) 
•  spin-0 : ggF (qqbar annihilation negligible)  



The H mass 

N
o

t
r
e
v

i
e
w

e
d

,
f
o

r
i
n

t
e
r
n

a
l

c
i
r
c
u

l
a

t
i
o

n
o

n
l
y

1. Higgs Boson Mass
MH - the only parameter not fixed in the Standard Model. Fixes                  .
Most precisely determined with H→γγ and 4 lepton channels.
δMH  precision at 0.3% level (PDG2013: δMW 187ppm, δMZ 23ppm, δMtop 0.5%).

 ATLAS:  MH = 125.5 ± 0.2 (stat.) ± 0.6 (syst.) GeV      
 CMS:      MH = 125.7 ± 0.3 (stat.) ± 0.3 (syst.) GeV
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Signal Strength ATLAS-CMS  
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       µ  = 1.23 +/- 0.18                                         µ  = 0.88 +/- 0.14 

Consistent with the SM prediction for both ATLAS and CMS with precision about 15% 
level. 



HL-LHC 
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CMS Projection

Expected uncertainties on
Higgs boson couplings

expected uncertainty
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Zκ

gκ

bκ

tκ

τκ

 = 14 TeV Scenario 1s at  -1300 fb
 = 14 TeV Scenario 2s at  -1300 fb

ECFA HL-LHC with L=300 fb-1 (3 ab-1) physics study.
Higgs mass precision ΔMH ~100 (50) MeV.
Access to top-Yukawa coupling via ttH, and rare decay H→µµ.
Coupling precision of 10 to 5% reachable (even few% in κγ/κZ). 
Detector performances (trigger, lepton-id, fake, τ/b-id) are crucial.  
Theory uncertainty dominates - challenge for theorists!
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Scenario 1
current systematic uncert.

Scenario 2
theory uncert.      ↘ 1/2
other systematics ↘ 1/√L

L = 300 fb�1

L = 3 ab�1

σ(14TeV)/σ(8TeV)
  gg→H 2.6
  qq→qqH 2.6 (sees high Mx)
  qq→VH 2.1
  gg→ttH 4.7 (phase space)
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• CMS latest 
public result 
add by hends 

µ=0.80±0.14

NEW! µ=1.0 ± 0.5

K. Nikolopoulos October 29th, 2013Higgs boson physics with ATLAS

Signal strength

31

Higgs boson signal strength measurement 
• using H→γγ, H→ZZ→4l and H→WW→lvlv
• µ = (σ x BR) / (σ x BR)SM

• µ = 1.33+0.21-0.18 at mH=125.5 GeV
[including preliminary/partial H→bb/H→ττ results gives 1.23±0.18]

• consistency with SM 7%

µ=0.80±0.14

NEW! µ=1.0 ± 0.5

K. Nikolopoulos October 29th, 2013Higgs boson physics with ATLAS

Signal strength

31

Higgs boson signal strength measurement 
• using H→γγ, H→ZZ→4l and H→WW→lvlv
• µ = (σ x BR) / (σ x BR)SM

• µ = 1.33+0.21-0.18 at mH=125.5 GeV
[including preliminary/partial H→bb/H→ττ results gives 1.23±0.18]

• consistency with SM 7%

NEW!  µ= 0.87 ±29  

CMS summary  


