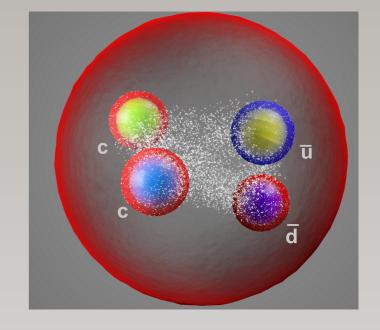
Doubly charmed tetraquark at LHCb and future prospects

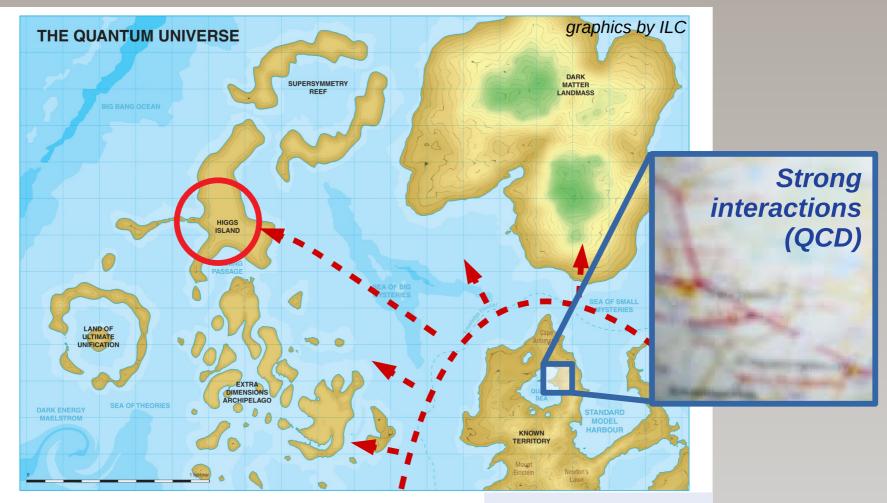
Ivan Polyakov

Birmingham University Seminar, 30 March 2022

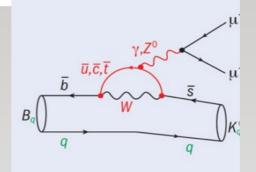
Picture:S. Velasco, Quanta Magazine

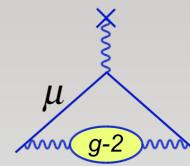


Outlook


- Introduction (mini-review)
 - QCD & hadron spectroscopy theory and experiment, exotic hadrons
 - predictions for QQqq'
- The T_{cc} <u>tetraquark</u>
 - LHCb detector & Selection
 - Observation of the signal
 - Study with unitarized model
 - Interpretations
 - Production properties
- Discussion
 - Reflection on the results
 - Open questions
- Future possibilities
 - Doubly heavy tetraquarks
 - Hexaquarks

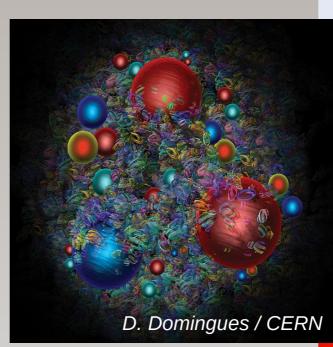
arXiv:2109.01038


arXiv:2109.01056

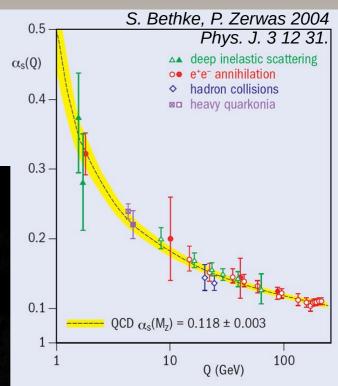


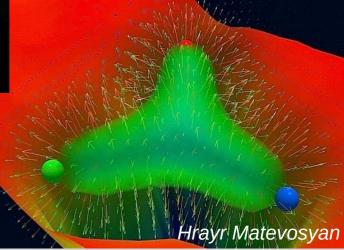
High Energy Physics frontiers

- The known QCD is not that well known
- And it's understanding also limits the hunt for non-direct signs of NP:
 B-decays, g-2 of μ, ...



QCD vs. Hadron Spectorscopy


 QCD is successful theory giving in precise predictions at high energies


 However is higly non-perturbative at hadron/nuclei energy scale

Therefore for hadron spectroscopy (semi-)phenomenological approaches have to be used

mini-review in the following (oversimplified & incomplete)

- Effective approach for compact hadrons ("bag" model)
 - extracting effective parameters from measured hadron masses may involve assumptions about diquarks, string, ...
 - Heavy Quank Symmetry expansion in 1/m_o + kin. Corrections

see in

Brambilla, Vairo, Rösch, 2005

... Eichten, Quigg, 2017

Braaten, He, Mohapatra, 2020

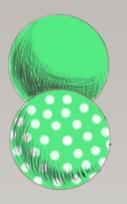
... and much more ...

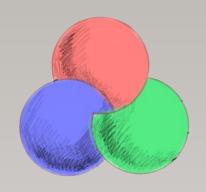
- Sum of quark masses, binding, hyperfine interaction
 - -> reproduces masses of (ground) hadron states within ~10 MeV

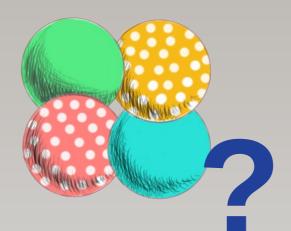
State (mass	Spin	Expression for mass	Predicted
in MeV)		[24]	mass (MeV)
N(939)	1/2	$3m_q^b - 3a/(m_q^b)^2$	939
$\Delta(1232)$	3/2	$3m_q^b + 3a/(m_q^b)^2$	1239
$\Lambda(1116)$	1/2	$2m_q^b + m_s^b - 3a/(m_q^b)^2$	1114
$\Sigma(1193)$	1/2	$2m_q^b + m_s^b + a/(m_q^b)^2 - 4a/m_q^b m_s^b$	1179
$\Sigma(1385)$	3/2	$2m_q^b + m_s^b + a/(m_q^b)^2 + 2a/m_q^b m_s^b$	1381
$\Xi(1318)$	1/2	$\begin{array}{l} 2m_q^d + m_s^b + a/(m_q^d)^2 + 2a/m_q^d m_s^b \\ 2m_s^b + m_q^b + a/(m_s^b)^2 - 4a/m_q^d m_s^b \\ 2m_s^b + m_q^b + a/(m_s^b)^2 + 2a/m_q^b m_s^b \end{array}$	1327
$\Xi(1530)$	3/2	$2m_s^b + m_q^b + a/(m_s^b)^2 + 2a/m_q^b m_s^b$	1529
$\Omega(1672)$	3/2	$3m_s^b + 3a/(m_s^b)^2$	1682
42(1012)	0/2	Sires See (ires)	1002
=======================================	0/2	3, 3, (,	1002
State (mass		3 / (3/	Predicted
		n Expression for mass	
State (mass		n Expression for mass	Predicted
State (mass in MeV)	s Spin	n Expression for mass [24]	Predicted mass (MeV)
State (mass in MeV) $\pi(138)$	s Spin	n Expression for mass	Predicted mass (MeV) 140
State (mass in MeV) $\pi(138)$ $\rho(775), \omega(78)$	s Spin 0 2) 1	n Expression for mass	Predicted mass (MeV) 140 780
State (mass in MeV) $\pi(138)$ $\rho(775), \omega(78)$ $K(496)$	s Spin 0 2) 1	n Expression for mass	Predicted mass (MeV) 140 780 485

Baryon	Reference	Mass (MeV)
Λ_b	[34]	5619.30 ± 0.34
	[35]	$5620.15 \pm 0.31 \pm 0.47$
	[36]	$5619.7 \pm 0.7 \pm 1.1$
	Average	5619.5 ± 0.3
Σ_b^+ Σ_b^-	[37]	$5811.3^{+0.9}_{-0.8} \pm 1.7$
Σ_b^-	[37]	$5815.5^{+0.6}_{-0.5} \pm 1.7$
$Average^a$	(Over charges)	5814.26 ± 1.76
Σ^{*+}	[37]	$5832.1 \pm 0.7^{+1.7}_{-1.8}$
\sum^{*-}	[37]	$5835.1 \pm 0.6^{+1.7}_{-1.8}$
$Average^a$	(Over charges)	5833.83 ± 1.81
Ξ_b^0	[38]	5793.5 ± 2.3
	[35]	$5788.7 \pm 4.3 \pm 1.4$
	[39]	$5791.80 \pm 0.39 \pm 0.17 \pm 0.26$
	Average	5791.84 ± 0.50
Ξ_b^-	[40]	$5795.8 \pm 0.9 \pm 0.4$
	[35]	$5793.4 \pm 1.8 \pm 0.7$
	Average	5795.30 ± 0.88
Average	(Over charges)	5792.68 ± 0.43
Ξ_{b}^{*0}	[41]	5949.71 ± 1.25^{b}
Ω_b^-	[40]	$6046.0 \pm 2.2 \pm 0.5$
	[35]	$6047.5 \pm 3.8 \pm 0.6$
	Average	6046.38 ± 1.95

State (M	Spin	Expression for mass	Predicted
in MeV)			$M \; (\mathrm{MeV})$
$\Lambda_c(2286.5)$	1/2	$2m_q^b + m_c^b - 3a/(m_q^b)^2$	Input
$\Sigma_c(2453.4)$	1/2	$2m_q^b + m_c^b + a/(m_q^b)^2 - 4a/(m_q^b m_c^b)$	2444.0
$\Sigma_c^*(2518.1)$	3/2	$2m_q^b + m_c^b + a/(m_q^b)^2 + 2a/(m_q^b m_c^b)$	2507.7
$\Xi_c(2469.3)$	1/2	$B(cs) + m_q^b + m_s^b + m_c^b - 3a/(m_q^b m_s^b)$	2475.3
$\Xi_c'(2575.8)$	1/2	$B(cs) + m_q^b + m_s^b + m_c^b + a/(m_q^b m_s^b)$	
		$-2a/(m_q^b m_c^b) - 2a_{cs}/(m_s^b m_c^b)$	2565.4
$\Xi_c^*(2645.9)$	3/2	$B(cs) + m_q^b + m_s^b + m_c^b + a/(m_q^b m_s^b)$	
		$+a/(m_q^b m_c^b) + a_{cs}/(m_s^b m_c^b)$	2632.6
$\Omega_c(2695.2)$	1/2	$2B(cs) + 2m_s^b + m_c^b + a/(m_s^b)^2 - 4a_{cs}/(m_s^b m_c^b)$	2692.1^{a}
$\Omega_c^*(2765.9)$	3/2	$2B(cs) + 2m_s^b + m_c^b + a/(m_s^b)^2 + 2a_{cs}/(m_s^b m_c^b)$	2762.8^{a}

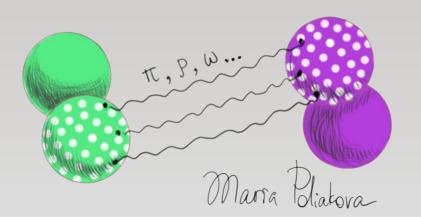

Gasiorowicz, Rosner, 1981


Karliner, Rosner, 2017


+ successful predictions of Ξ_{cc} and T_{cc} masses!

_ ...

- Effective approach for compact hadrons ("bag" model)
 - Heavy Quank Symmetry explansion in 1/m_o + kin. corrections
 - Sum of quark masses, binding, hyperfine interaction
 - extracting effective parameters from measured hadron masses may involve assumptions about diquarks, string, ...



corresponding form-factors and cut-offs not well controlled → uncertainties up to O(100 MeV)

see in

Brambilla, Vairo, Rösch, 2005

Eichten, Quigg, 2017

Braaten, He, Mohapatra, 2020

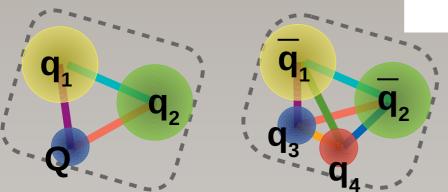
Gasiorowicz, Rosner, 1981

Karliner, Rosner, 2017

... and much more ...

Tornquist, 1991 & 2003

Voloshin, Okun, 1976


Pepin, Stancu, Genovese, Richard, 1996

Li, Sun, Liu, Zhu, 2012

Wu, Liu, Wu, Valderrama, Xie, Geng, 2019

... and much more ... 6

NR quark constituent model with semi-phenomenological quark-quark interaction potential

one-gluon $V_{ij} = -\frac{3}{16} \lambda_i^C \lambda_j^C \left[V_{OGE} + V_{CONF} + V_{SS} \right]$ exchange ("Couloumb") $V_{OGE} = rac{lpha}{r_{ij}} \;, \;\; V_{CONF} = V_0 + eta r_{ij} \;, \;\; V_{SS} = lpha rac{\hbar^2}{m_i m_j c^2} rac{e^{-r_{ij}/r_0}}{r_0^2 r_{ij}} \sigma_i \sigma_j$

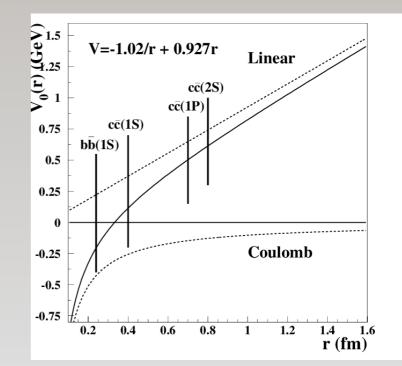
 $H = \sum_{i} \left(m_i + \frac{p_i^2}{2m_i} \right) + \sum_{i \leq i} V_{ij}(r_{ij})$

color, of quarks

Bhaduri, Cohler, Yogami, 1981

Silvestre-Brac, 1996

Semay, SIlvestre-Brac, 1994

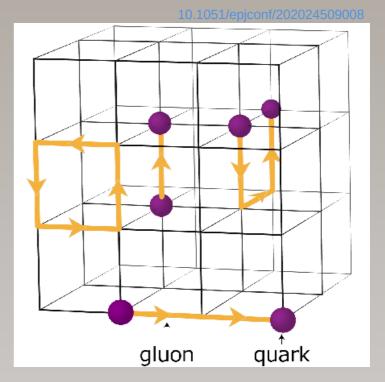

Janc, Rosina, 2003

... and more ...

Can also take boson exchange (molecular binding) into account

Vijande, Fernandez, Valcarce, Silvestre-Brac, 2004

- Heavy quark allows to probe shorter range where OGE dominates
- Understanding is limited by the quark configurations to consider


Hashimoto, Onogi, 2004

Prelovsek, 2017

Hashimoto, Laiho, Sharpe, 2020 (PDG)

Follana et al, 2007

Donald et al., 2012

QCD sum rules typically give >100 MeV uncertainty

* please tell me if not the case

Navarra, Nielsen, Lee, 2007 Wang, 2018

Understanding is limited by the quark configurations to consider

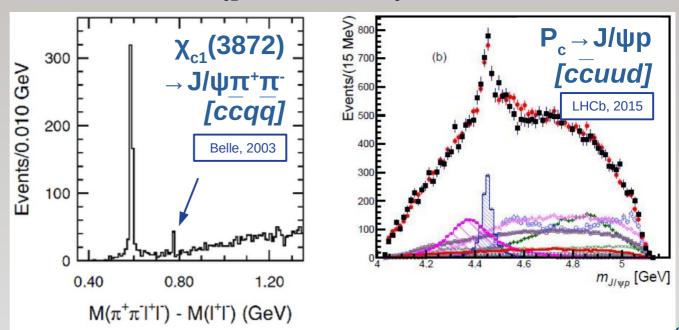
Experimental studies

- Hadrons beyond conventional $(q_1 \overline{q}_2 \text{ and } q_1 q_2 q_3)$ were anticipated since 60's
- First candidates for tetraquarks in 90's: $f_0(500)$, $K_0^*(800)$, $a_0(980)$ and $f_0(980)$ later $D_{s,1}^*(2317)$, $D_{s,1}(2460)$ and $D_{s,1}(2632)$

no clear conclusion reached due to large widths & theoretical ambiguities

Fazio, 2004

Eidelman, Gutsche, Hanhart, Mitchell, Spanier, 2020 (PDG)


Θ⁺ [uudds] claimed in 2003 later shown to be false

Trilling, 2006 (PDG)

• First ones uniquely identified as exotic were $\chi_{c1}(3872)$ and P_{c}

discovered in heavy sector

much smaller widths and _clearer understanding of cc allowed to exclude conventional interpretations

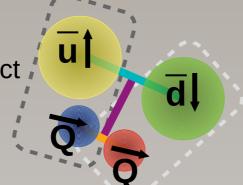
Exotic hadrons

- Exotic hadrons: ccq₁q₂ and ccq₁q₂q₃
 ~30 tetra/pentaquarks candidates discovered since then
 - most have $Q\overline{Q}$ pair and large width,
 - interpretations are still unclear molecula/compact
 - and even resonance nature is questioned

States	Quark content
$X_0(2900), X_1(2900) [21, 22]$	$\overline{c}du\overline{s}$
$\chi_{c1}(3872)$ [6]	$c\overline{c}q\overline{q}$
$\begin{array}{c} Z_c(3900) \ [23], \ Z_c(4020) \ [24,25], \ Z_c(4050) \ [26], \ X(4100) \ [27], \\ Z_c(4200) \ [28], \ Z_c(4430) \ [29–32], \ R_{c0}(4240) \ [31] \end{array}$	$c\overline{c}u\overline{d}$
$Z_{cs}(3985)$ [33], $Z_{cs}(4000)$, $Z_{cs}(4220)$ [34]	$c\overline{c}u\overline{s}$
$\chi_{c1}(4140)$ [35–38], $\chi_{c1}(4274)$, $\chi_{c0}(4500)$, $\chi_{c0}(4700)$ [38], $\chi_{c1}(4630)$, $\chi_{c2}(4685)$ [34], $\chi_{c3}(4740)$ [39]	$c\overline{c}s\overline{s}$
X(6900) [14]	$c\overline{c}c\overline{c}$
$Z_b(10610), Z_b(10650)$ [40]	$b\overline{b}u\overline{d}$
$P_c(4312)$ [41], $P_c(4380)$ [42], $P_c(4440)$, $P_c(4457)$ [41], $P_c(4357)$ [43]	$c\overline{c}uud$
$P_{cs}(4459)$ [44]	$c\overline{c}uds$

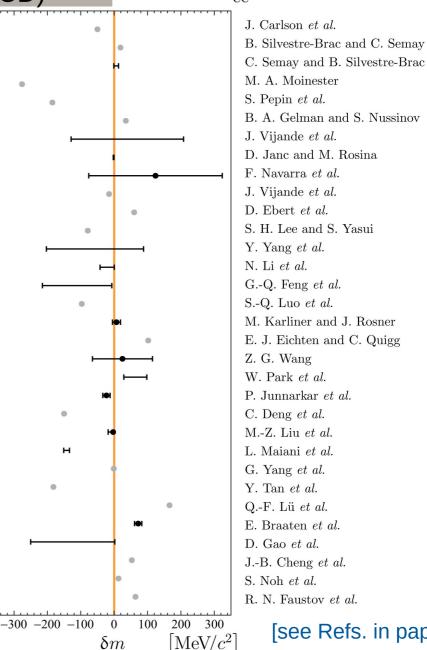
- QQq'q" are prime candidates to be bound and therefore long-lived
 - first estimates (based on $V_{qq'}(r) \sim r^{0.1}$ approximation) stated that should happen for $m_Q/m_q > 6-8$ (compare to $m_b/m_u \sim 15$, $m_c/m_u \sim 5-6$)

Adler, Richard, Taxil, 1982


Ballot, Richard, 1983

Predictions for ccud mass

More recent calculations (including Lattice QCD)


 $|\delta m \equiv m_{{
m T}_{cc}^+} - (m_{{
m D}^{*+}} + m_{{
m D}^0})|$

all agree that it should be true for [bb][ud] with QQ forming compact color anti-triplet and resulting binding of ~150MeV

However not clear for [bc][ud] and [cc][ud]

 Predictions for a ground ccud state (isoscalar with $J^P=1^+$) vary within ±250MeV wrt to D⁰D*+ threshold

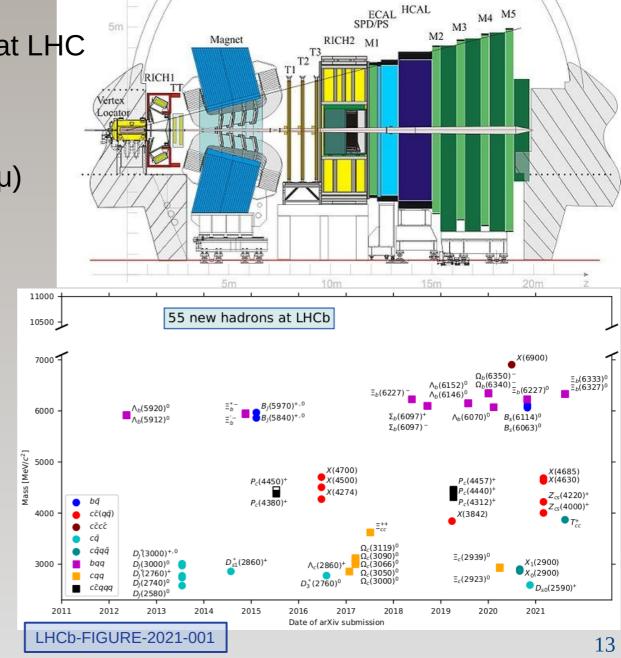
[see Refs. in paper]

"Observation of an exotic narrow doubly charmed tetraquark"

arXiv:2109.01038

&

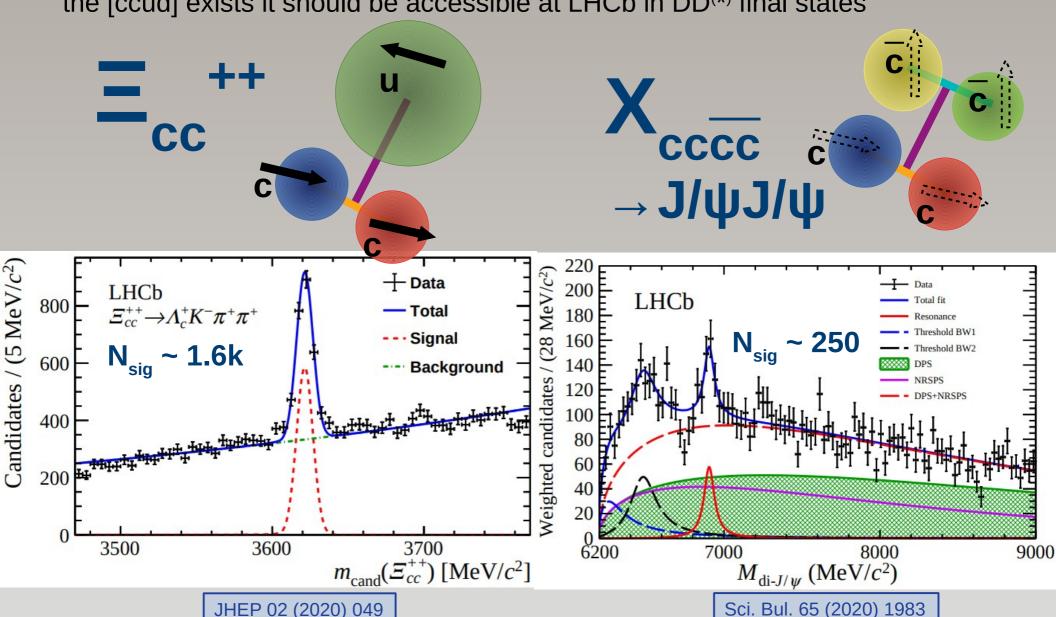
"Study of the doubly charmed tetraquark T_{cc}+"


arXiv:2109.01056

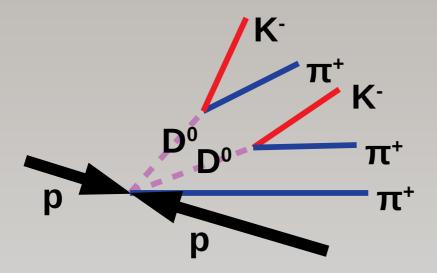
The LHCb detector

 LHCb - forward spectrometer at LHC with excellent

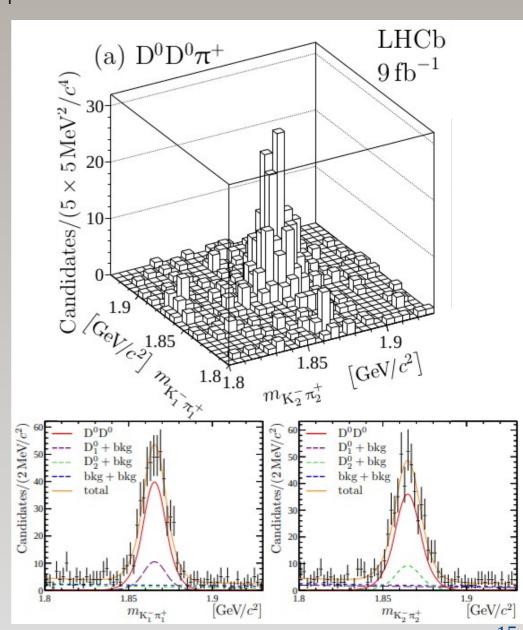
- momenta/mass,
- vertex/time resolution
- particle identification $(K/\pi/p/\mu)$


very powerful tool for heavy hadron spectroscopy → contribute to major part of hadrons discovered at LHC

JINST 3 (2008) S08005

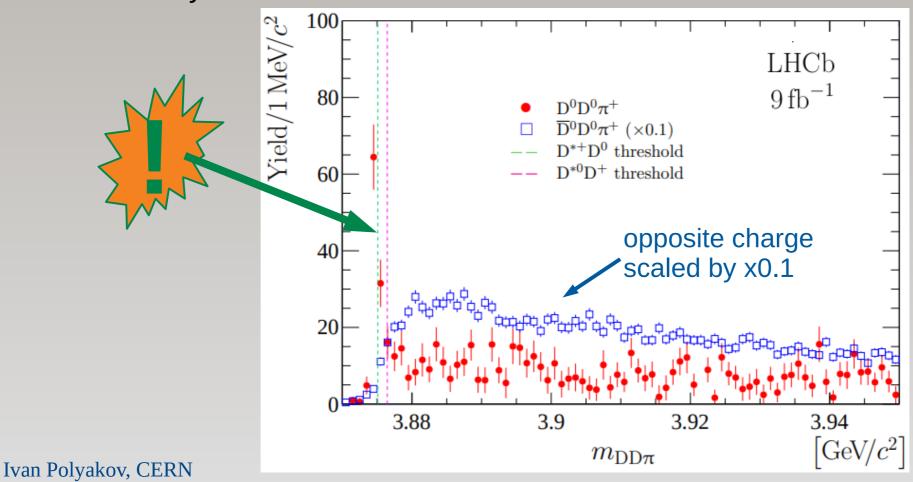

Previous hadrons with two c-quarks

• The observations of Ξ_{cc}^{++} [ccu] and X[cccc] \rightarrow J/ ψ J/ ψ indicate that if the [ccud] exists it should be accessible at LHCb in DD(*) final states

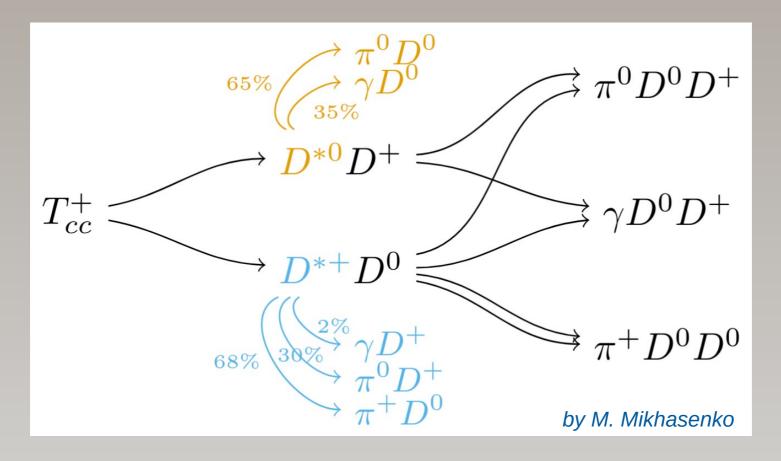


Selection of D⁰D⁰π⁺

- Select prompt $D^0D^0\pi^+$ candidates via $D^0 \to K^-\pi^+$
- Require non-prompt K^{-} & π^{+} with high p_{π}^{-}
- Require good quality of track, vertexes
 & particle identification
- Ensure no K/π candidates belong to one track (clones) or duplicates or reflections via mis-ID



• Subtract fake-D background using 2D fit to $(m_{K\pi}, m_{K\pi})$



Signal

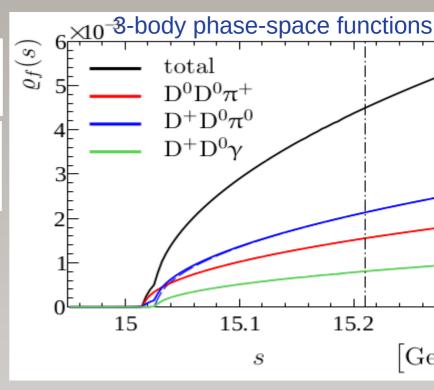
- A narrow peak near DD* threshold is seen
- No peaking structures in sidebands or opposite-sign mode (can't be explained by DCS decay $D^0 \rightarrow K^+\pi^-$)
- The structure is present in all different data taking condition subsamples, ensured by various cross-checks

Decay amplitude

- Model assumptions:
 - JP=1+: decays to D0D*+/D+D*0 in S-wave
 - $\mathsf{T}_{\mathsf{cc}}^{+}$ is isoscalar: $\left| \mathsf{T}_{\mathsf{cc}}^{+} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| \mathsf{D}^{*+} \mathsf{D}^{0} \right\rangle \left| \mathsf{D}^{*0} \mathsf{D}^{+} \right\rangle \right)$

Decays to D⁰D*+/D+D*0 with same couplings

Unitarized 3-body BW model


Constructed 3-body Breit-Wigner model as

$$\mathcal{A}_{\mathrm{U}}(s) = \frac{1}{m_{\mathrm{U}}^{2} - s - i m_{\mathrm{U}} \hat{\Gamma}(s)} \widehat{\Xi}$$

$$\varrho_f(s) = \frac{1}{(2\pi)^5} \frac{\pi^2}{4s} \iint ds_{12} ds_{23} \frac{\left| \mathfrak{M}_f(s, s_{12}, s_{23}) \right|^2}{\left| g \right|^2}$$

where complex width is derived as

$$im_{\rm U}\hat{\Gamma}(s) \equiv |g|^2 \Sigma(s)$$

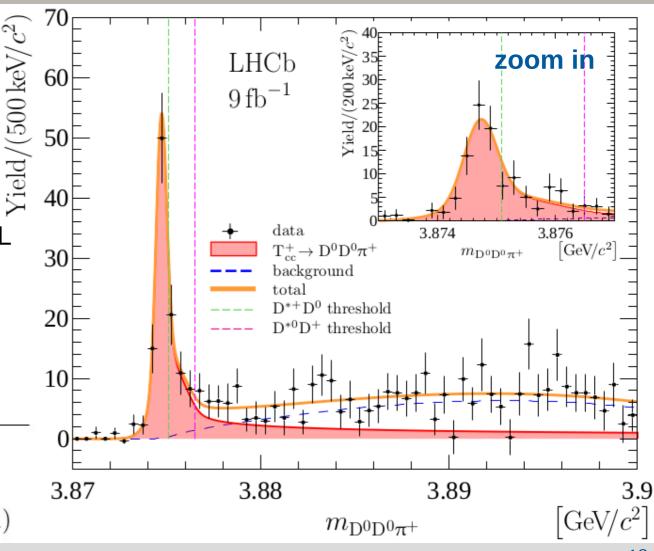
Imaginary part for unitarity (optical theorem)

$$\Im |\Sigma(s)|_{\Im s = 0^{+}} = \frac{1}{2} \varrho_{\text{tot}}(s),$$

$$\varrho_{\text{tot}}(s) \equiv \sum_{f} \varrho_{f}(s)$$

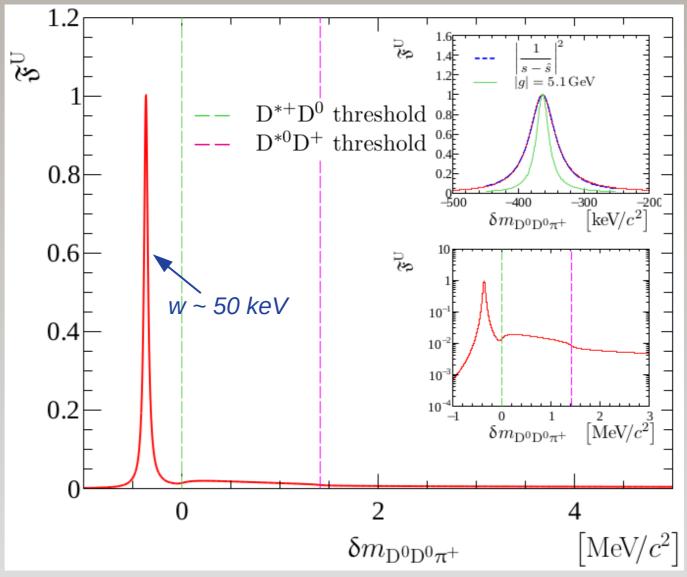
Real part for analyticity (Kramers-Kronig relations)

$$\begin{split} \Re \, \Sigma(s)|_{\Im s = 0^+} &= \xi(s) - \xi(m_{\mathrm{U}}^2) \,, \\ \xi(s) &= \frac{s}{2\pi} \operatorname{p.v.} \int\limits_{s_{\mathrm{th}}^*}^{+\infty} \frac{\varrho_{\mathrm{tot}}(s')}{s' \, (s' - s)} ds' \end{split}$$


Fit with unitarized model

- Fit to same data, use same model as before except for the signal function
- Peak position below D⁰D** threshold with ~9σ significance!

- Peak shape does not depend on T_{cc} → DD* coupling |g| for large values
 - → get limit |g|>7.7(6.2) GeV at 90(95)% CL


Results:

Parameter	Value
N	186 ± 24
$\delta m_{ m U}$	$-359 \pm 40 \text{keV}/c^2$
g	$3 \times 10^4 \text{GeV} (\text{fixed})$

Mass shape in unitarized model

- Fit result (before smearing with resolution)
- Close to Breit-Wigner in proximity to peak maximum
- Large tail above DD* thresholds

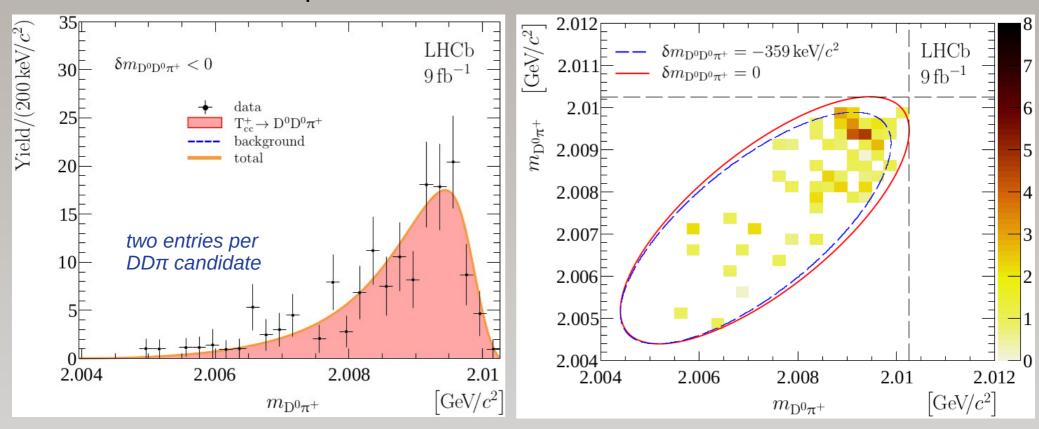
Systematic uncertainties

 Systematic uncertainties found to be negligibly small

(thanks to closeness to threshold)

Source	$\sigma_{\delta m_{ m U}}$	$[\text{keV}/c^2]$
Fit model		
Resolution model		2
Resolution correction facto	r	2
Background model		2
Coupling constants		1
Unknown value of $ g $		$^{+7}_{-0}$
Momentum scaling		3
Energy loss		1
$D^{*+} - D^0$ mass difference		2
Total		+9 -6

Measured mass wrt threshold:

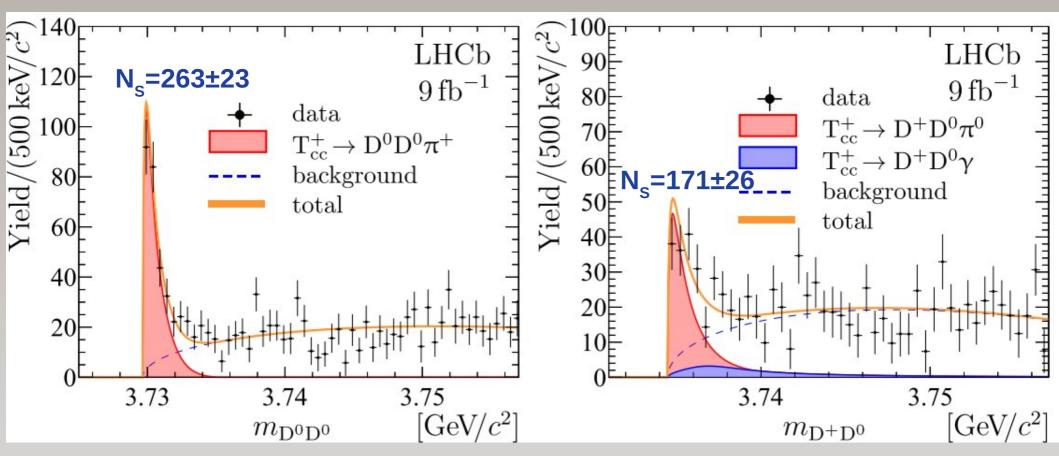

$$\delta' m_0 = -359 \pm 40^{+9}_{-6} \,\text{keV}/c^2$$

Fit model systematics considered for the lower limit of |g| changing it to

$$|g| > 5.1 (4.3) \,\text{GeV} \,\text{at } 90 (95) \,\% \,\text{CL}$$

Offshell D**

- Integrate unitarized model over D⁰D⁰π⁺ and D⁰D⁰ masses
 - \rightarrow obtain D⁰ π ⁺ shape



Perfect agreement supports the assumptions:

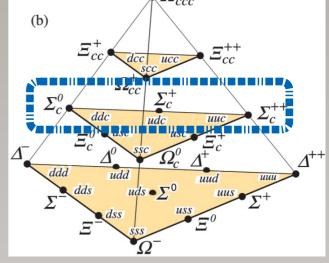
- T_{cc} → DD* decaying via off-shell D*
- JP=1+ assignement for T_{cc}

Partially reconstructed $T_{cc} \rightarrow D^0D^{0/+}X$

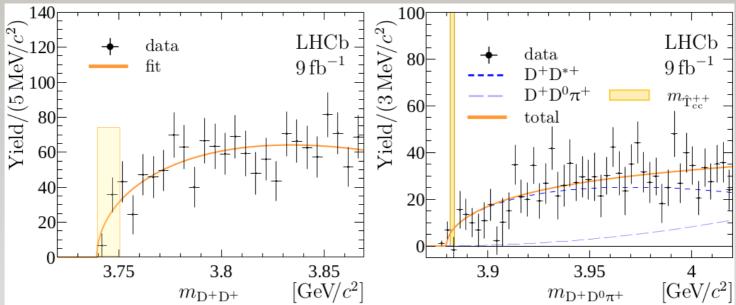
• Obtain D⁰D⁰ mass shape from T_{cc} \rightarrow D⁰D*+(\rightarrow D⁰ π +) and D⁰D+ mass shape from T_{cc} \rightarrow D⁰D*+(\rightarrow D+ π 0) and T_{cc} \rightarrow D+D*0(\rightarrow D⁰ π 0/ γ 0) in the same way as for D⁰ π +

• Relative yields are in agreement with model expectations for isoscalar T_{cc} with $J^P=1^+$ and $D^{0/+}$ reconstruction efficiencies

T_{cc} isospin


• If assume that $X \to D^0D^0\pi^+$ signal is part of an iso-triplet, then one can estimate masses of its partners to be: from Σ_h and Σ_c isotriplets

$$m_{\hat{T}_{cc}^{0}} = m_{\hat{T}_{cc}} + m_{u} + m_{u} - a' q_{\overline{u}} q_{\overline{u}} - b' q_{cc} (q_{\overline{u}} + q_{\overline{u}})$$


$$m_{\hat{T}_{cc}^{+}} = m_{\hat{T}_{cc}} + m_{u} + m_{d} - a' q_{\overline{u}} q_{\overline{d}} - b' q_{cc} (q_{\overline{u}} + q_{\overline{d}})$$

$$m_{\hat{T}_{cc}^{++}} = m_{\hat{T}_{cc}} + m_{d} + m_{d} - a' q_{\overline{d}} q_{\overline{d}} - b' q_{cc} (q_{\overline{d}} + q_{\overline{d}})$$

$$m_{\hat{T}_{cc}^0} - (m_{D^0} + m_{D^{*0}}) = -2.8 \pm 1.5 \text{ MeV}/c^2$$

 $m_{\hat{T}_{cc}^{++}} - (m_{D^+} + m_{D^{*+}}) = 2.7 \pm 1.3 \text{ MeV}/c^2$

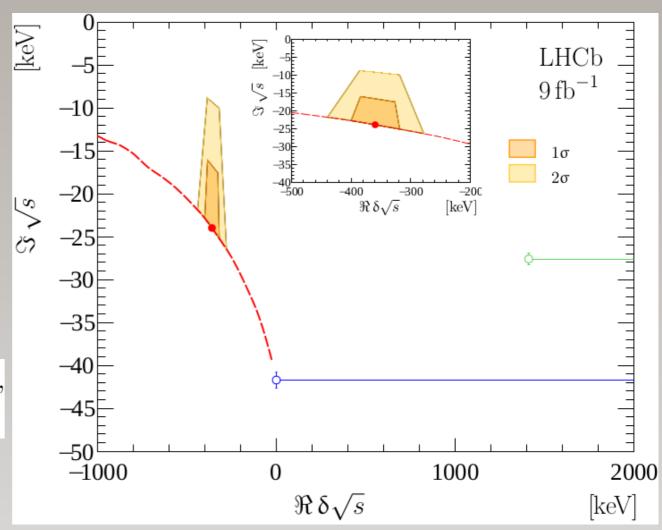
Should therefore see a comparable peak from $T_{cc}^{++} \rightarrow D^+D^{*+}$ decay (100-200 events) in D^+D^+ and $D^+D^0\pi^+$, no signal is seen

Pole position

Within the advanced decay model (with dominant role of DD* decay mode)

find pole position as solution

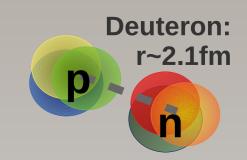
$$\frac{1}{\mathcal{A}_{\mathrm{U}}^{II}(\hat{s})} = 0$$


$$\sqrt{\hat{s}} \equiv m_{\text{pole}} - \frac{i}{2} \Gamma_{\text{pole}}$$

$$\delta\sqrt{s} \equiv \sqrt{s} - (m_{\rm D^{*+}} + m_{\rm D^0})$$

Result

$$\delta m_{\text{pole}} = -360 \pm 40^{+4}_{-0} \text{ keV}/c^2,$$

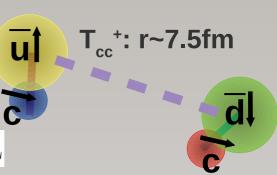

$$\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \text{ keV},$$

Low-energy expansion

 From expansion near pole can extract low-energy scattering parameters

$$\mathcal{A}_{NR}^{-1} = \frac{1}{a} + r \frac{k^2}{2} - ik + \mathcal{O}(k^4)$$

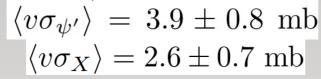
- scattering length: $a = \left[-(7.16 \pm 0.51) + i(1.85 \pm 0.28) \right]$ fm
- characteristic size: $R_a \equiv -\Re a = 7.16 \pm 0.51 \,\mathrm{fm}$
- effective range: $0 \le -r < 11.9 (16.9) \text{ fm at } 90 (95)\% \text{ CL}$
- |Z| < 0.52 (0.58) at 90 (95)% CL Weinberg compositness:

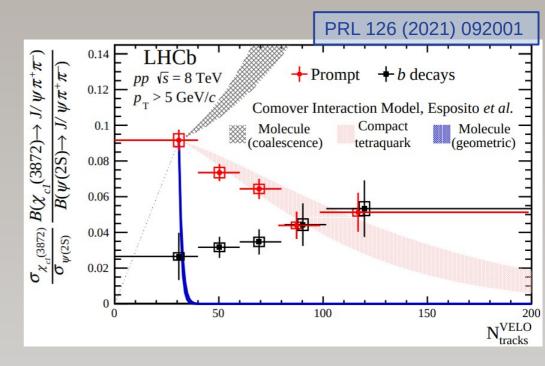

see more discussions in

MITP Workshop, 2022

Mikhasenko, 2022

• size in case of D°D*+ molecula: $R_{\Delta E} \equiv \frac{1}{2} = 7.5 \pm 0.4 \,\mathrm{fm}$

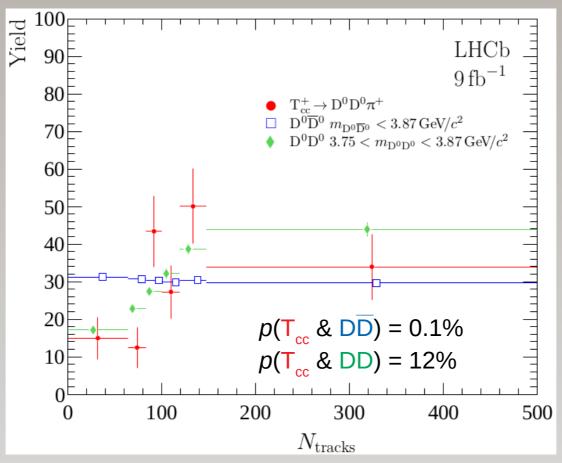

$$R_{\Delta E} \equiv \frac{1}{\gamma} = 7.5 \pm 0.4 \,\mathrm{fm}$$


Production vs track multuplicity

- Based on characteristic size one can expect that T_{cc}^{+} has some properties similar to χ_{c1} (3872)
- For $\chi_{c1}(3872)$ production a suppression wrt $\psi(2S)$ was observed at high track multiplicities
- Explained in comover model where χ_{c1} (3872) is broken by closely flying pions/gluons
- Therefore probing effective $Q\pi$ break-up cross-section:

and fractions of Q out of reach of comovers

more details in Braaten et al., arXiv:2021.13499



T_{cc} multiplicity distribution

- Compare $T_{cc}^{+} \rightarrow D^{0}D^{0}X$ signal distributions with
 - D⁰D⁰ in 3.75<m_{DD}<3.87 GeV region

(presumably dominated by double-parton scattering)

- D⁰D⁰ in m_{DD}<3.87 GeV region (mainly single pp → DD production)

- No suppression of T_{cc}^+ wrt $D\overline{D}$ (and also to DD) at high multiplicities in contrast to X(3872) wrt ψ (2S)
- Intriguing similarity with cc+cc

28

Discussions

Reflections on measured mass, 1

The measured mass difference

$$\delta m_{\rm U} = -359 \pm 40^{+9}_{-6} \, {\rm keV}/c^2$$

is consistent with some of predictions.

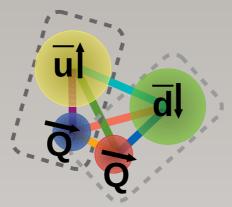
- Few notable matches for δm predictions:
 - [-1,+13] MeV Semay, Silvestre-Brac, 1994 (NR quark-quark potential model) false prediction (1993) for spin-0&1 ccqq states with masses ~3300-3400 MeV
 - [-2.7,-0.6] MeV Janc, Rosina, 2003
 (NR quark-quark potential model)
 -0.6 MeV corresponds to Bhaduri potential
 - [-42.1;+0.3] or [-18;+1] MeV
 (OME exchange in DD* molecula)
 Li, Sun, Liu, Zhu, 2012
 Liu, Wu, Valderrama, Xie, Geng, 2019
 - 1±12 MeV Karliner, Rosner, 2017 (phenomenology model for compact tetraquark)
 - -23±11 MeV Junnarkar, Mathur, Padmanath, 2018 (Lattice QCD)

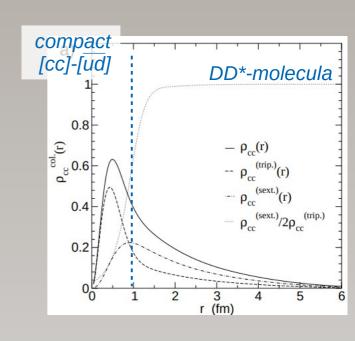
Carlson et al.	1987
. Silvestre-Brac and C. Semay	1993
. Semay and B. Silvestre-Brac	1994
. A. Moinester	1995
Pepin et al.	1996
. A. Gelman and S. Nussinov	2003
Vijande et al.	2003
. Janc and M. Rosina	2004
. Navarra et al.	2007
Vijande et al.	2007
. Ebert et al.	2007
H. Lee and S. Yasui	2009
. Yang et al.	2009
. Li et al.	2012
Q. Feng et al.	2013
-Q. Luo et al.	2017
I. Karliner and J. Rosner	2017
. J. Eichten and C. Quigg	2017
G. Wang	2017
V. Park et al.	2018
Junnarkar et al.	2018
. Deng et al.	2018
IZ. Liu et al.	2019
Maiani et al.	2019
. Yang et al.	2019
. Tan et al.	2020
F. Lü et al.	2020
. Braaten et al.	2020
. Gao et al.	2020
-B. Cheng et al.	2020
Noh et al.	2021
. N. Faustov et al.	2021

[see Refs. in paper]

Two of the notable matches

The measured mass difference

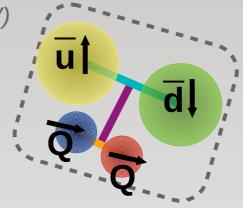

$$\delta m_{\rm U} = -359 \pm 40^{+9}_{-6} \, {\rm keV}/c^2$$


- NR quark-quark potential model
 - [-2.7,-0.6] MeV

-0.6 MeV corresponds to Bhaduri potential

gives insight into wave function: spatial & color configuration → dominated by DD* component

Janc, Rosina, 2003



- Phenomenology model for compact tetraquark [cc]-[ud]
 - 1±12 MeV

- using measured Ξ_{cc} mass to calibrate cc binding

 $(\delta m = 7\pm 12 \text{ MeV} \rightarrow 1\pm 12 \text{ MeV})$

Karliner, Rosner, 2017

Contribution	Value (MeV)
$2m_c^b$	3421.0
$2m_q^b$	726.0
$a_{cc}/(m_c^b)^2$	14.2
$-3a/(m_q^b)^2$	-150.0
cc binding	-129.0
Total	3882.2 ± 12

Reflections on measured mass, 2

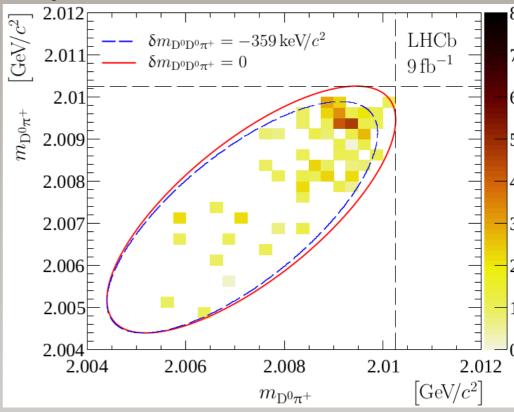
The measured mass difference

$$\delta m_{\rm U} = -359 \pm 40^{+9}_{-6} \, {\rm keV}/c^2$$

has the best precision wrt threshold of all exotics

- Demands better theory estimates
 - → can start from accounting for isospin splitting

note
$$m_{th}(D^+D^{*0})-m_{th}(D^0D^{*+})=1.3 \text{ MeV}$$

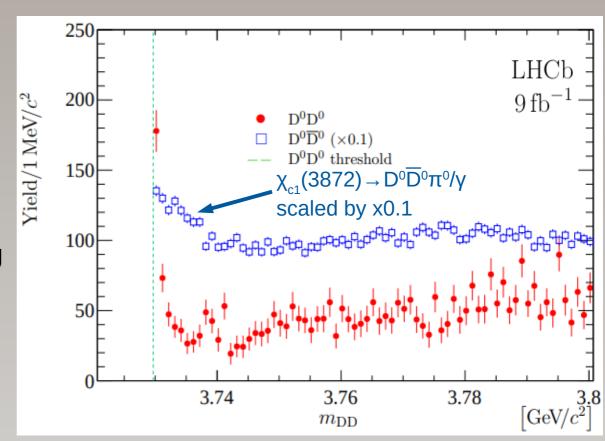

Using known D⁰ and D*+ mass can derive

$$m(T_{cc}^{+}) = 3874.75 \pm 0.04(exp) \pm 2x0.05(D^{0}) MeV$$

= 3874.75 ± 0.11 MeV

which is better than precision for $\Lambda_c(0.14 \text{ MeV})$, $\Sigma_c(0.14 \text{MeV})$, $\Xi_{cc}^{++}(0.4 \text{MeV})$ and $\eta_c(0.4 \text{MeV})$ \to new input to tune the models

Future prospects for T_{cc}⁺


- Analysis of the $T_{cc}^{+} \rightarrow D^{0}D^{0}\pi^{+}$ Dalitz-plot analysis
 - to confirm $J^P=1^+$ spin assignment and probe for isovector component
- Dedicated measurement on D⁰D⁰X and D⁰D⁺X relative yields to probe iso-spin violation
- Production cross-section and multiplicity / momentum spectra

- Inclusion of $D^0 \rightarrow K\pi\pi\pi$ can give ~50% gain in statistics
- Data of Run3 (x5 gain in statistics) will be especially important

Production estimation

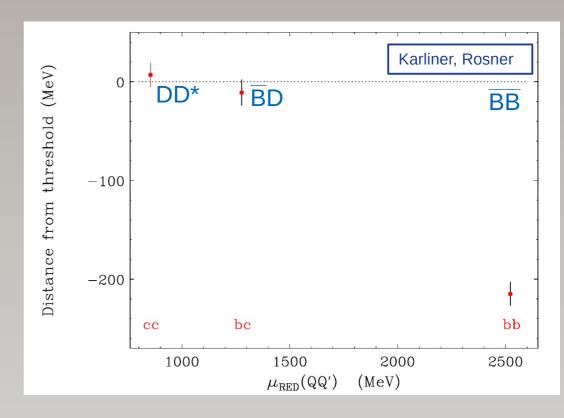
• In future with better understanding of $\chi_{c1}(3872) \rightarrow D^0\overline{D}{}^0X$ shape a dedicated measurement can be done

• Interesting to determine $\sigma(T_{cc}^{+})/\sigma(\Xi_{cc}^{++})$, either closer to $\sigma(\Lambda_c^{+})/\sigma(D) \sim 0.1$ -0.2 or $\sigma(\Lambda_b^{0})/\sigma(B) \sim 1/2$ (in pp at 13 TeV) or less?

will be limited by knowledge of

Br(
$$\Xi_{cc}^{++} \to \Lambda_{c}^{+} K \pi \pi$$
) ~ 5-20%,
Br($\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}$) ~ 1.3-4%,
Br($\Xi_{c}^{+} \to pK\pi$) ~ (6.2±3.0)x10⁻³

Other doubly-heavy states


- The T_{cc} below DD* threshold supports predictions for stable T_{bb}
- Interestingly, binding for [bc][ud]
 wrt BD threshold is expected to be
 ~10 MeV higher than for T_{cc} + wrt DD*

Karliner, Rosner, 2017 Semay, Sllvestre-Brac, 1994

- \rightarrow Giving stable T_{bc}?
- Different expectations in molecula models
 Li, Sun, Liu, Zhu, 2012

Liu, Wu, Valderrama, Xie, Geng, 2019

Good test for models

- From naive phenomenology (HQS-like) estimates one can expect that
 - [cc][sq] and [cc][sq] are above corresponding thresholds.
 - [cc][ud]q can decay to Ξ_{cc} + hadrons

Upgrade and Future searches for T_{bb/c}

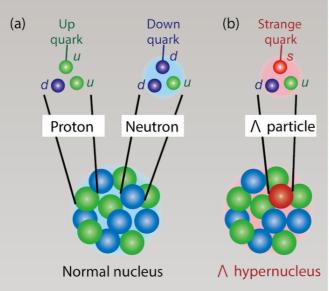
see talk by Steve Blusk [the Tcc mini-workshop]

Cons

- O(2-20) supression with every $c \rightarrow b$ substitution compare with $\sigma(\Xi_{cc})$: $\sigma(\Xi_{bc})$: $\sigma(\Xi_{bb}) \sim 1$: 0.4 : 0.015 at 14TeV in pp
- Br(b \rightarrow c + $\pi/\mu/X$) are 0.1-1%

Zhang, Wu, Zhong, Yu, Fang, 2011

Pros


- x5 gain in integrated luminosty in Run3 (2022-2024)
- gain in trigger and reconstruction efficiencies (x2?) from Upgraded LHCb
- larger trigger efficiency for final states with high-p_⊤ muon
- Comparing to ~150 events of $T_{cc} \rightarrow D^0D^0\pi^+$ one can expect in Run3
 - T_{hc} real chances to find (if combining several modes)
 - long-lived: ~ O(1-10) events in modes $D^0D^+\pi^-$, $\overline{B}{}^0K^-\pi^+$, $D^0D^+\mu\nu$, $\Xi_{cc}^{+}\overline{p}$, $T_{cc}^{+}\pi^-$, ...
 - promptly-decaying: ~ O(10) events in modes B^-D^+ , $\overline{B}{}^0D^0$
 - $T_{bb} \rightarrow BD + X \sim O(0.01)$ not much hope yet

Hadron physics meets Nuclear

- In hadron spectroscopy advances of the theory is limited by the quark configurations to consider $(q_1q_2 \& q_1q_2q_3 , ccq_1q_2 \& ccq_1q_2q_3)$
 - problems with interpretation in most cases (except for the T_{cc}^{+} !)
 - In general presence of heavy quark helps

- In nuclear physics systems with only light quarks are usually considered
 - where non-perturbative effects are at its maximum

 Hyper-nuclei with ∧ are explored since 50's

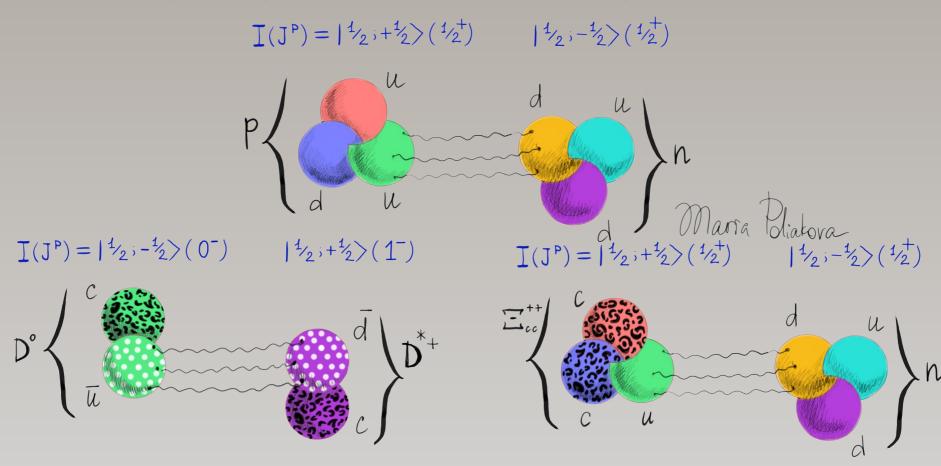

 Inclusion on b/c-quark will simplify the system and bring such a unique tool to new level Gal, Hungerford, Millener, 2016

TABLE I Experimental Λ separation energies, B_Λ, of light hypernuclei from emulsion studies. These are taken from a compilation (Davis and Pniewski, 1986) of results from (Cantwell et al., 1974; Jurič et al., 1973), omitting ¹⁵_ΛN (Davis, 1991). A reanalysis for ¹²_ΛC (Dłuzewski et al., 1988) gives 10.80(18) MeV.

Hypernucleus	Number of events	$B_{\Lambda} \pm \Delta B_{\Lambda} \text{ (MeV)}$	
³ _A H	204	0.13 ± 0.05	
⁴ Λ Λ Λ Λ He	155	2.04 ± 0.04	
⁴ _A He	279	2.39 ± 0.03	
⁵ AHe	1784	3.12 ± 0.02	
⁶ AHe	31	4.18 ± 0.10	
⁷ He	16	not averaged	
Λ Λ Λ Λ Λ Be	226	5.58 ± 0.03	
⁷ ΛBe	35	5.16 ± 0.08	
⁸ He	6	7.16 ± 0.70	
& Li	787	6.80 ± 0.03	
⁸ Be	68	6.84 ± 0.05	
ALi ABe	8	8.50 ± 0.12	
⁹ Be	222	6.71 ± 0.04	
AB	4	8.29 ± 0.18	
¹⁰ Be	3	9.11 ± 0.22	
10 B	10	8.89 ± 0.12	
11 B	73	10.24 ± 0.05	
12 B	87	11.37 ± 0.06	
10 B 11 B 12 B 13 C 13 C	6	10.76 ± 0.19	
13 C	6	11.69 ± 0.12	
14 C	3	12.17 ± 0.33	

Similarities in binding

Note same spin-isospin structure in following examples

No consensus in predictions for masses of the heavy hexaquarks/dibaryons

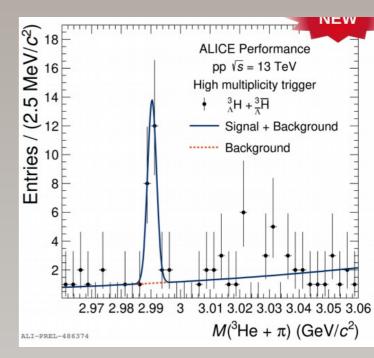
Ivan Polyakov, CERN 38

Stancu, 1999

Huang, Ping, Wang, 2014

Hyper-nuclei at LHC

 ALICE observed hypertriton in both PbPb, pPb and pp collisions


ALICE, 2107.10627

- Searches for ΛΛ di-baryon (uuddss) are ongoing,
 - no success yet

ALICE, 1506,07499

ALICE, 1905.07209

The [uuddcc] has more chances to exist due to ~100 MeV stronger binding between cc quarks * * M. Karliner

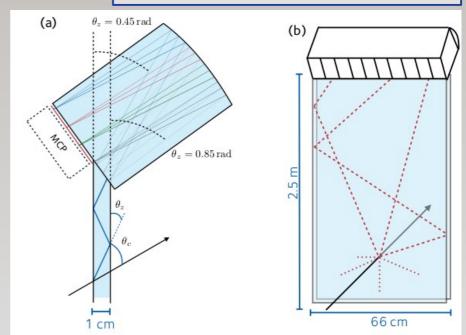
- LHCb has x50-100 larger statistics of pp-collisions than ALICE,
 - perfectly suited for reconstructing c-hadron decays (τ ~O(ps)),
 - cc produced in ~5% of pp collisions [LHCb, 1205.0975]

- Possible modes for searches:
 - H_c [cuduud] → ppK⁻π⁺(π⁻) / pΛ_c
 - H_{cs} [csudud] $\rightarrow ppK^-K^-\pi^+$
 - H_{cc} [ccuudd] $\rightarrow \Lambda_c p K^- \pi^+, .../\Lambda_c \Lambda_c$
 - H_{ss} [ssuudd] → ppK⁻π⁺

Deuteron ID & TORCH

- Hypernuclei decays with deuterons (d) and possibly tritons (t, ³H) / ³He
 - H_{ss} [ssuudd] → dK⁻
 - H_c [cuduud] $\rightarrow dK^-\pi^+(\pi^+) / dD^+$
 - H_{cs} [csudud] $\rightarrow dK^-K^-\pi^+\pi^+ / dD^0K^-$
 - H_{cc} [ccuudd] $\rightarrow dD^0$, $dD^+\pi^-$ / dD^0D^+

- $-{}^{3}H_{\Lambda} \rightarrow {}^{3}He \ \pi^{-} \ , \ dp\pi^{-}$
- ${}^{3}\text{He}_{\Lambda} \rightarrow {}^{3}\text{He} \ \pi^{+}\pi^{-}$, dp
- $-{}^{3}H_{\Lambda c} \rightarrow tK^{-}\pi^{+}$, dpK⁻, ${}^{3}He~K^{-}$
- ${}^{3}\text{He}_{\Lambda c} \rightarrow {}^{3}\text{He K}^{\text{-}}\pi^{\text{+}}$, dpK- $\pi^{\text{+}}$, tK-

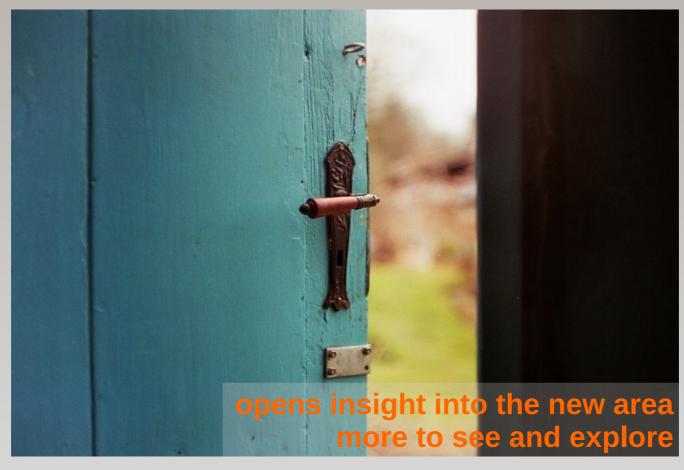

- ..

- Currently no deuteron ID at LHCb above 30 GeV/c
- Time-of-flight detector prepared for LHCb Upgrade II

N. Harnew et al., arXiv:1810.06658

T.H. Hancock et al., NIM A 958 (2020) 162060

- Aiming to provide p/K/π identification in 2-10 GeV/c range where present RICH detectors are not efficient
- Will also provide identification for deuteron and triton up to 25-30 GeV/c, thus enriching potential for hyper-nuclei searches


Conclusions

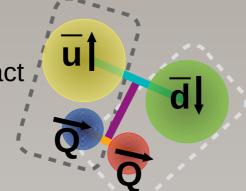
- A novel class of hadrons observed [ccud], just below D^0D^{*+} threshold, consistent with predicted T_{cc}^{+} with $J^P=1^+$
- $D^0D^0\pi^+$, $D^0\pi^+$, D^0D^0 , D^0D^+ spectra described

Intriguing production properties

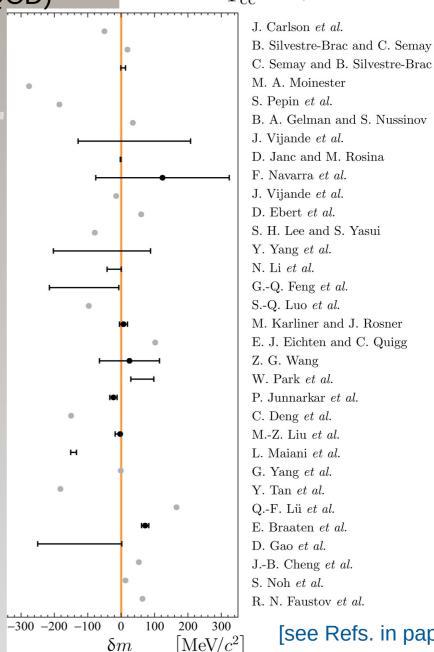
arXiv:2109.01038

arXiv:2109.01056

• Run3 (2022-2024) and Upgraded LHCb will bring a lot of possibilities for further studies - $T_{cc.}$ T_{bc} , H_c , H_{cc} , ...


Backup

Predictions for ccud mass


More recent calculations (including Lattice QCD)

 $|\delta m \equiv m_{{
m T}_{cc}^+} - (m_{{
m D}^{*+}} + m_{{
m D}^0})|$

all agree that it should be true for [bb][ud] with QQ forming compact color anti-triplet and resulting binding of ~150MeV

- However not clear for [bc][ud] and [cc][ud]
- Predictions for a ground ccud state (isoscalar with $J^P=1^+$) vary within ±250MeV wrt to D⁰D*+ threshold
- Review few selected in the following Neither full, nor objective, and oversimplified → see Ref. List in papers for an overview

[see Refs. in paper]

Selected theory approaches

- Few selected approaches discussed in following
 - Phenomenological approach for compact hadrons
 - Non-relativistic quark constituent model
 - Molecula object
 - Hydrogen bond in QCD
 - Lattice QCD
 - ... others

Neither full, nor objective, and oversimplified → see Ref. List in papers for an overview

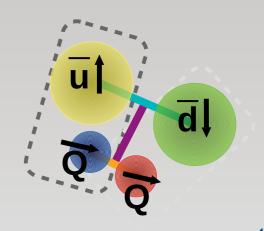
Phenomenology approach for compact hadrons

- Extracting effective quark masses and binding or hyperfine interaction terms from measured hadron masses and assuming cc are in anti-triplet color configuration
 - 1a. Heavy Quark Symmetry

•
$$m(cc\overline{ud}) = m(\Xi_{cc}) + 315 \, MeV \sim m(\Xi_{cc}) + [m(\Lambda_c) - m(D^0)] + kinematic correction$$

$$\rightarrow \delta m = +102 \, MeV$$

$$\begin{array}{c} \delta m = +65 \, MeV \\ \hline using measured \\ \Xi_{cc} mass \end{array}$$

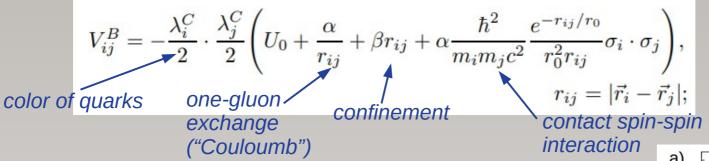

Eichten, Quigg, 2017

- 1b. More detailed calculation with estimation of uncertainties
 - \rightarrow $\delta m = 72\pm11 \text{ MeV}$ Braaten, He, Mohapatra, 2020

1c. Different treatment of meson/baryon quark masses & splitting parameters

Contribution	Value (MeV)
$2m_c^b$	3421.0
$2m_a^b$	726.0
$a_{cc}/(m_c^b)^2$	14.2
$-3a/(m_q^b)^2$	-150.0
cc binding	-129.0
Total	3882.2 ± 12

 $\delta m = 7\pm12 \text{ MeV}$ using measured $\Xi_{cc} \text{ mass}$ $\delta m = 1\pm12 \text{ MeV}$ Karliner, Rosner, 2017

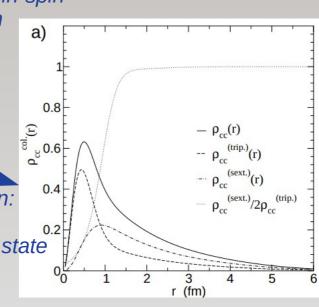


Non-relativistic quark constituent model

 Solve Schrodinger equation considering interaction between every pair of quarks

$$H = \sum_{i} \left(m_i + \frac{\mathbf{p}_i^2}{2m_i} \right) - \frac{3}{16} \sum_{i < j} \tilde{\lambda}_i \tilde{\lambda}_j v_{ij}(r_{ij})$$

Different variants for exact potential are used (modifications of Cornell potential)


Results

 \rightarrow δm = [-1;+13] MeV Semay, SIlvestre-Brac, 1994 $\delta m = [-2.7; -0.6] \text{ MeV}$... + more within [-200;+100] MeV range

(choice of basic, parameters, ...) fractions of molecula/compact state

Janc, Rosina, 2003

gives insight into wave-function: spatial & color configuration,

Molecula object

Consider one-boson-exchange between DD* forming a molecula

• get (much stonger) binding depending on particular parameters (mainly cut-off value Λ ~1GeV (0.2fm))

```
δm = [-332;-185] MeV

= [-42;0.3] MeV

= [-18;+1] MeV

Pepin, Stancu, Genovese, Richard, 1996

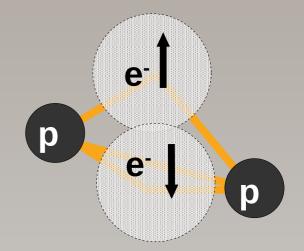
Li, Sun, Liu, Zhu, 2012

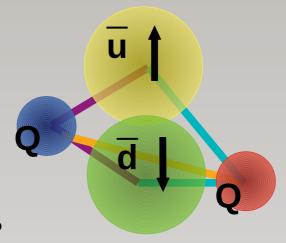
Wu,Liu, Wu, Valderrama, Xie, Geng, 2019
```

- 2&3. Adding meson-exchange (π , ρ , K, σ , η , ...) terms to the potential in NR model (quark-quark interaction)
 - results vary a lot, indicate 100-200 MeV increase in binding wrt no-OBE,

```
δm = -129 MeVVijande, Fernandez, Valcarce, Silvestre-Brac, 2003= -15 MeVVijande, Weissman, Valcarce, Barnea, 2007= -203 MeVYang, Deng, Ping, Goldman, 2009= [-150;-1] MeVYang, Ping, Segovia, 2019
```

(though do not agree with other calculations w/o OBE) Ivan Polyakov, CERN

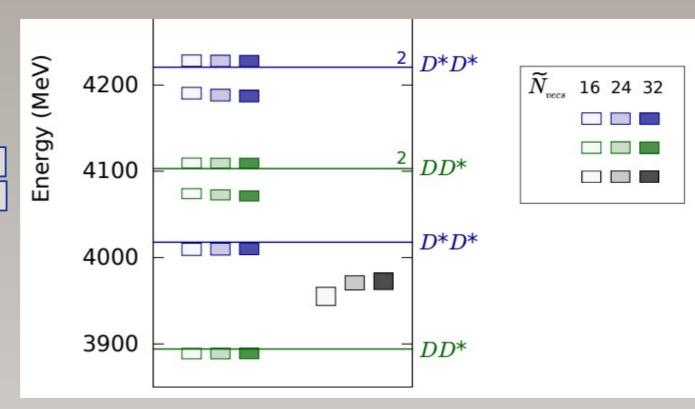

Hydrogen bond of QCD


- Consider interaction between two D-mesons by solving Schrodinger equation for light quarks (q) given fixed distance between the heavy ones (Q)
 - → get effective interaction between QQ

$$H = \frac{1}{2M} \sum_{ ext{heavy}} P_i^2 + \frac{1}{2m} \sum_{ ext{light}} p_i^2 + V(oldsymbol{x}_A, oldsymbol{x}_B) + V_I(oldsymbol{x}_A, oldsymbol{x}_B, oldsymbol{x}_1, oldsymbol{x}_2)$$
 Q - Q interaction Q - Q interaction Q - Q interaction

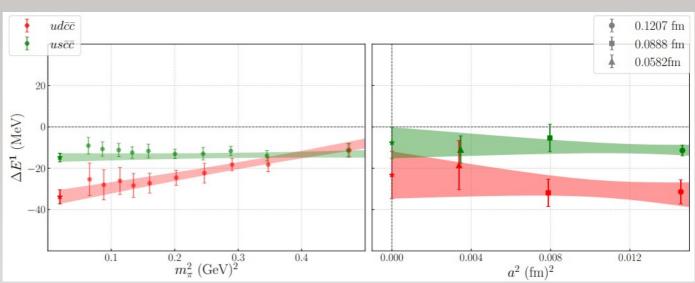
→ get **O(MeV)** binding between D mesons: and thus **δm** ~ **-135 MeV** Maiani, Polosa, Riquer, 2019

is it analogous to quark consituent model with OGE? should it be re-considered for DD* interaction?



Lattice QCD

- Inconclusive
 - no binding


HAL QCD Collaboration, 2014

Hadron Spectrum Collaboration, 2017

δm ~ -23±11 MeV

Junnarkar, Mathur, Padmanath, 2018

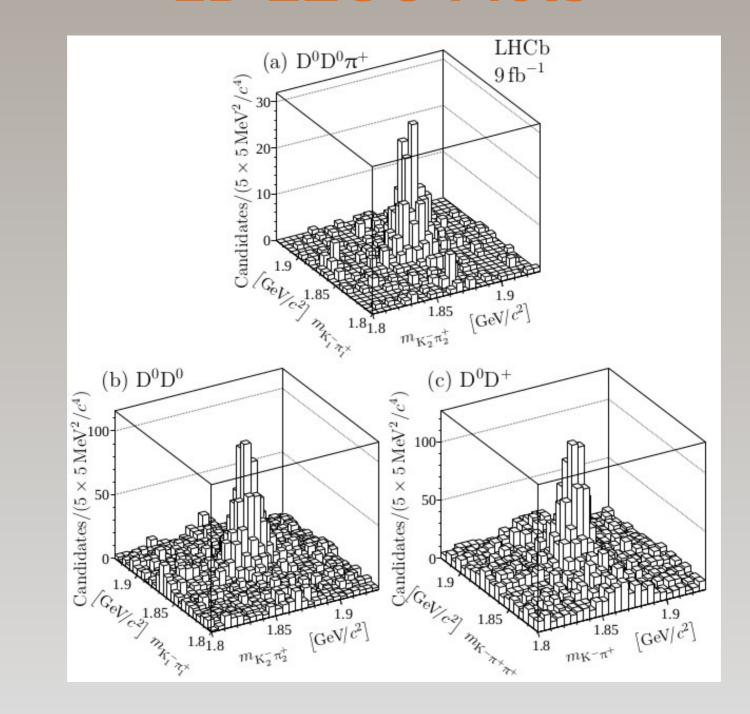
Summary of Results

- A narrow peak in $D^0D^0\pi^+$ below D^0D^{*+} threshold is observed with $S>20\sigma$
- Naive BW parameters:

$$\delta m_{\rm BW} = -273 \pm 61 \pm 5^{+11}_{-14} \,\text{keV}/c^2$$
,
 $\Gamma_{\rm BW} = 410 \pm 165 \pm 43^{+18}_{-38} \,\text{keV}$,

• Consistent with $[cc\overline{ud}]$ isoscalar tetraquark T_{cc}^{+} with $J^{P}=1^{+}$ for which

$$\delta' m_0 = -359 \pm 40^{+9}_{-6} \,\text{keV}/c^2$$


is determined using dedicated model

- A lower limit is set on $T_{cc}^+ \rightarrow DD^*$ coupling: $|g| > 5.1 \, (4.3) \, \mathrm{GeV} \, \, \mathrm{at} \, \, 90 \, (95) \, \% \, \, \mathrm{CL}$
- Threshold structures observed in D^0D^0 and D^0D^+ are found to be consistent with $T_{cc}^{+} \rightarrow D^0D^{0/+}\pi^{+/0}/\gamma$ decays via off-shell D* mesons
- Matching to low-energy DD* scattering amplitude we get
- Pole position:

$$\delta' m_{\text{pole}} = -360 \pm 40^{+4}_{-0} \text{ keV}/c^2,$$

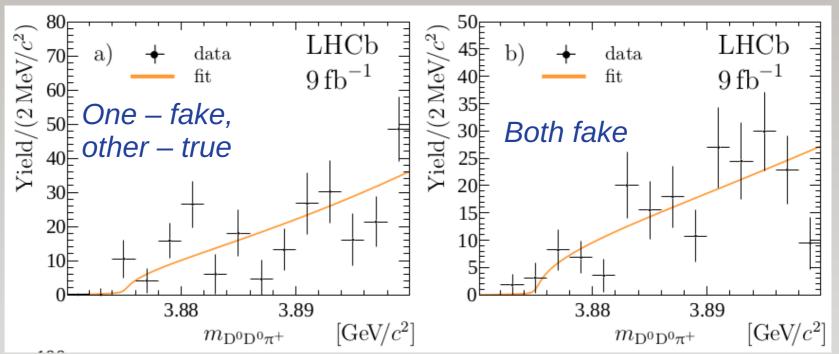
$$\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \text{ keV},$$

2D LEGO Plots

Resolution model

Sum of two gaussian functions,
 where widths and relative fractions are determined from simulation:

$$\sigma_1 = 263 \text{ keV x } 1.05$$
 $\sigma_2 = 2.413 \text{ x } \sigma_1$
 $f_1 = 0.778$

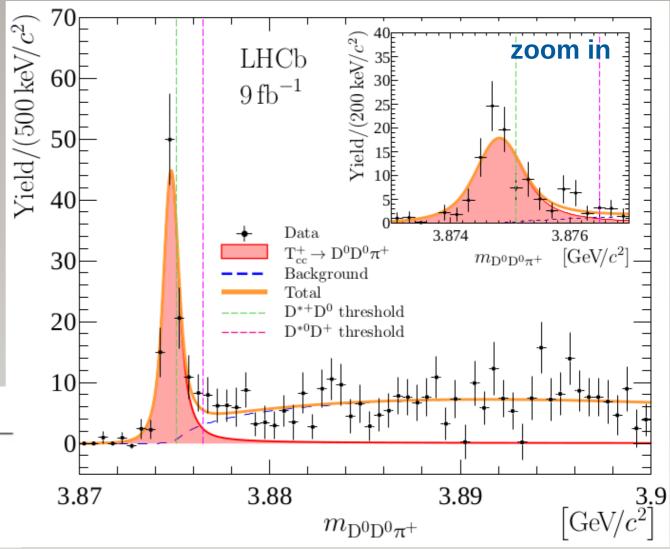

a 1.05 correction motivated by data-simulation comparison in various decay channels

- For systematics :
 - correction factor varied within 1.0-1.1
 - many alternative parametrisations tried:
 Apolonios, CrystalBall, Student-t, Jphnson-U, Novosibirsk

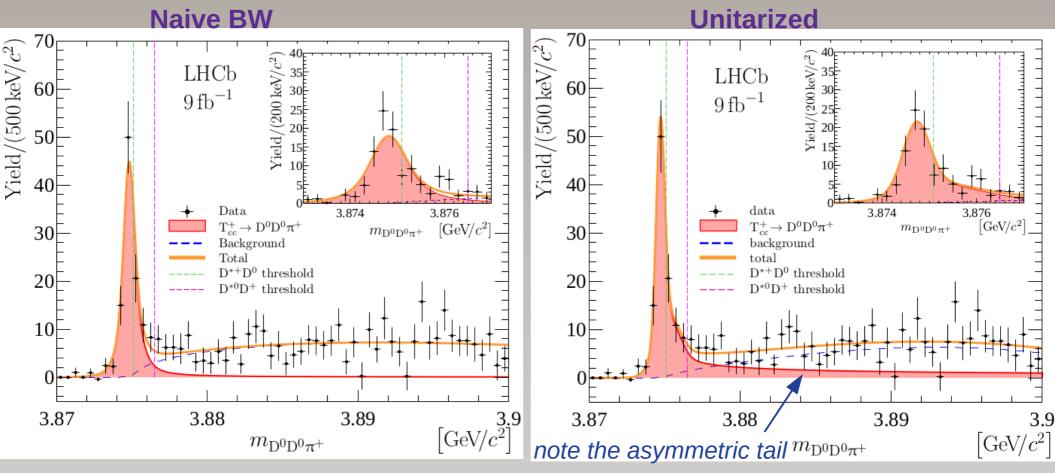
Cross-checks

- Different years, data taking conditions
- Exclude double-counting, ensure no duplicated tracks
- No reflections from mis-identification
- Ensure peaks produced by true D⁰ candidates

Mass distributions with fake Do's



Fit with Breit-Wigner function


- The distribution is fit with a sum of
 - P-wave relativistic Breit-Wigner
 - D**D⁰ phase space x pol₁ both convolved with resolution of ~400keV

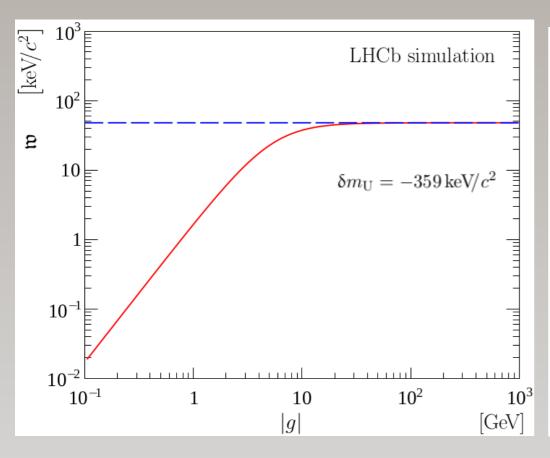
- Found to be below the D*+D⁰ threshold (with 4.3σ significance for "below D*+D⁰")
- Results:

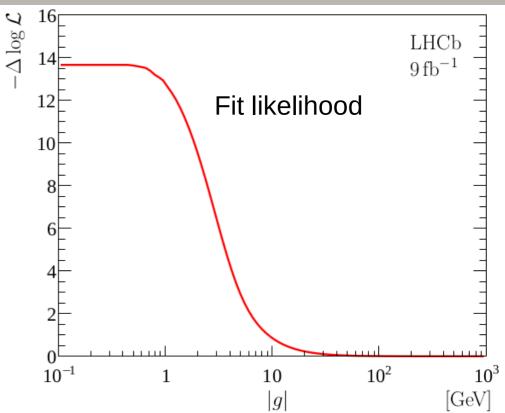
Parameter	Value
N	117 ± 16
$\delta m_{ m BW}$	$-273 \pm 61 \text{ keV}/c^2$
$\Gamma_{ m BW}$	$410 \pm 165 \mathrm{keV}$

Fits with Naive and Unitarized models

Compare position of peak maximum and FWHM (before convolving with resolution)

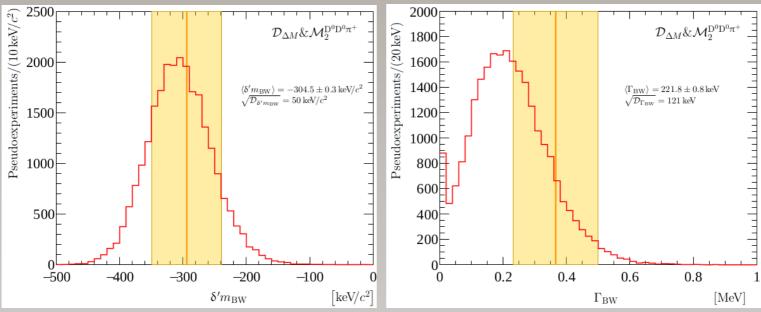
Both consistent with data

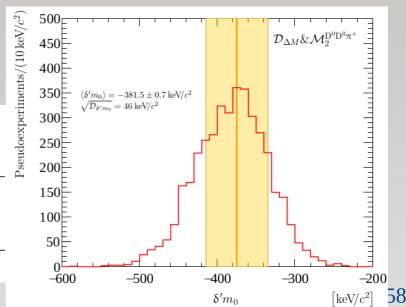

Consistency of Naive and Unitarized


- Generate 25k pseudoexperiments using unitarized BW model, fit them with naive BW model.
 Get δ'm_{BW} and Γ_{BW} consistent with values obtained from data
- Generate 4k pseudoexperiments using naive BW model, fit them with unitarized BW model.
 Get δ'm₀ consistent with values obtained from data
- Consistent considering current statistics, mass resolution and background

Parameter	Pseudoexperiments		Data
1 arameter	mean	RMS	Data
$\delta m_{ m BW} [{ m keV}/c^2] \ \Gamma_{ m BW} [{ m keV}]$	-301 222	50 121	-273 ± 61 410 ± 165 [84]
$\delta m_{\mathrm{U}} = [\mathrm{keV}/c^2]$	-378	46	-359 ± 40

Scaling in unitarized model


• For large values of |g| a scaling of overall shape is in place and visible width depends only on mass and $\Gamma(D^{*+})$


Consistency of Naive and Advanced

Generate 25k pseudoexperiments using advanced BW model, fit them with naive BW model.
 Get δ'm_{BW} and Γ_{BW} consistent with values obtained from data

 Generate 4k pseudoexperiments using naive BW model, fit them with advanced BW model.
 Get δ'm₀ consistent with values obtained from data

Parameter	Pseudoexperiments		Data
1 arameter	mean	RMS	Data
$\delta m_{\rm BW}$ [keV/ c^2]	-301	50	-273 ± 61
$\Gamma_{\rm BW} = [{ m keV}]$	222	121	-273 ± 61 410 ± 165 84
$\delta m_{ m U} = [{ m keV}/c^2]$	-378	46	-359 ± 40

Decay amplitude

- 3 key assumptions:
 - T_{cc}⁺ is isoscalar
 - JP=1+

- $\left|T_{cc}^{+}\right\rangle = \frac{1}{\sqrt{2}} \left(\left|D^{*+}D^{0}\right\rangle \left|D^{*0}D^{+}\right\rangle\right)$
- It decays to D⁰D*+/D+D*0 with same couplings

• Derive amplitudes for $X \rightarrow DD^*$ (as $1^+ \rightarrow 0^-1^-$ in S-wave) and $D^* \rightarrow D\pi / y$ (as $1^- \rightarrow 0^-0^-/1^-$): (parameters f, h, μ – from known BR)

$$\mathcal{A}_{\mathrm{T}_{\mathrm{cc}}^{+}\to\mathrm{D}^{*+}\mathrm{D}^{0}}^{\mathrm{S-wave}} = +\frac{g}{\sqrt{2}}\epsilon_{\mathrm{T}_{\mathrm{cc}}^{+}\mu}\epsilon_{\mathrm{D}^{*}}^{*\mu}$$

$$\mathcal{A}_{\mathrm{T}_{\mathrm{cc}}^{+}\to\mathrm{D}^{*0}\mathrm{D}^{+}}^{\mathrm{S-wave}} = -\frac{g}{\sqrt{2}}\epsilon_{\mathrm{T}_{\mathrm{cc}}^{+}\mu}\epsilon_{\mathrm{D}^{*}}^{*\mu}$$

$$\begin{array}{lll} \mathcal{A}_{\mathrm{D}^{*+}\to\mathrm{D}^{0}\pi^{+}} &=& f\epsilon_{\mathrm{D}^{*}}^{\alpha}p_{\mathrm{D}\alpha} \\ \\ \mathcal{A}_{\mathrm{D}^{*+}\to\mathrm{D}^{+}\pi^{0}} &=& -\frac{f}{\sqrt{2}}\epsilon_{\mathrm{D}^{*}}^{\alpha}p_{\mathrm{D}\alpha} \\ \\ \mathcal{A}_{\mathrm{D}^{*0}\to\mathrm{D}^{0}\pi^{0}} &=& +\frac{f}{\sqrt{2}}\epsilon_{\mathrm{D}^{*}}^{\alpha}p_{\mathrm{D}\alpha} \,, \\ \\ \mathcal{A}_{\mathrm{D}^{*}\to\gamma\mathrm{D}} &=& i\mu h\epsilon_{\alpha\beta\eta\xi}\epsilon_{\mathrm{D}^{*}}^{\alpha}p_{\mathrm{D}^{*}}^{\beta}\epsilon_{\gamma}^{*\eta}p_{\gamma}^{\xi} \end{array}$$

and combine them to together

$$\mathcal{A}_{\pi^{+}D^{0}D^{0}} = \frac{fg}{\sqrt{2}} \epsilon_{T_{cc}^{+}\nu} \left[\mathfrak{F}_{+}(s_{12}) \times \left(-p_{2}^{\nu} + \frac{(p_{2}p_{12})p_{12}^{\nu}}{s_{12}} \right) + (p_{2} \leftrightarrow p_{3}) \right] ,$$

$$\mathcal{A}_{\pi^{0}D^{+}D^{0}} = -\frac{fg}{2} \epsilon_{T_{cc}^{+}\nu} \left[\mathfrak{F}_{+}(s_{12}) \times \left(-p_{2}^{\nu} + \frac{(p_{2}p_{12})p_{12}^{\nu}}{s_{12}} \right) + \left(\begin{array}{c} p_{2} \leftrightarrow p_{3} \\ \mathfrak{F}_{+} \leftrightarrow \mathfrak{F}_{0} \end{array} \right) \right]$$

$$\mathcal{A}_{\gamma D^{+}D^{0}} = i \frac{hg}{\sqrt{2}} \epsilon_{\alpha\beta\eta\xi} \epsilon_{T_{cc}^{+}}^{\beta} \epsilon_{\gamma}^{\eta} p_{\gamma}^{\xi} \left[\mu_{+} \mathfrak{F}_{+}(s_{12}) p_{12}^{\alpha} - \mu_{0} \mathfrak{F}_{0}(s_{13}) p_{13}^{\alpha} \right]$$

$$\mathfrak{F}(s) = \frac{1}{m_{D^{*}}^{2} - s - i m_{D^{*}} \Gamma_{D^{*}}}$$

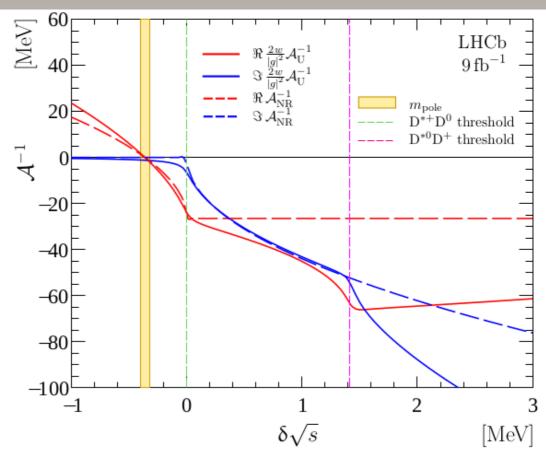
Low-energy scattering approximation

Relation between unitarized amplitude and low-energy expansion

$$\mathcal{A}_{NR}^{-1} = \frac{1}{a} + r \frac{k^2}{2} - ik + \mathcal{O}(k^4),$$

$$\frac{2}{|g|^2} \mathcal{A}_{U}^{-1} = -\left[\xi(s) - \xi(m_{U}^2)\right] + 2 \frac{m_{U}^2 - s}{|g|^2} - i\varrho_{\text{tot}}(s)$$

Proportionality factor


$$w = \frac{24\pi}{m_{\rm D^{*+}} + m_{\rm D^0}} \frac{1}{c_1}$$

Inverse scattering length

$$\frac{1}{a} = -\frac{1}{w} \left\{ \left[\xi(s_{\rm th}) - \xi(m_{\rm U}^2) \right] + i \varrho_{\rm tot}(s_{\rm th}) \right\}$$

Slope of linear term

$$r = -\frac{1}{w} \frac{16}{\left|g\right|^2}$$

Extended Data Fig. 9: Comparison of the \mathcal{A}_U and \mathcal{A}_{NR} amplitudes. The real and imaginary parts of the inverse \mathcal{A}_U and \mathcal{A}_{NR} amplitudes. The yellow band correspond to the pole position and vertical dashed lines show the $D^{*+}D^0$ and $D^{*0}D^+$ mass thresholds.

Analytic continuation

 To study poles analytic continuation of amplitude and hence complex width and phase-space functions onto complex plane is required

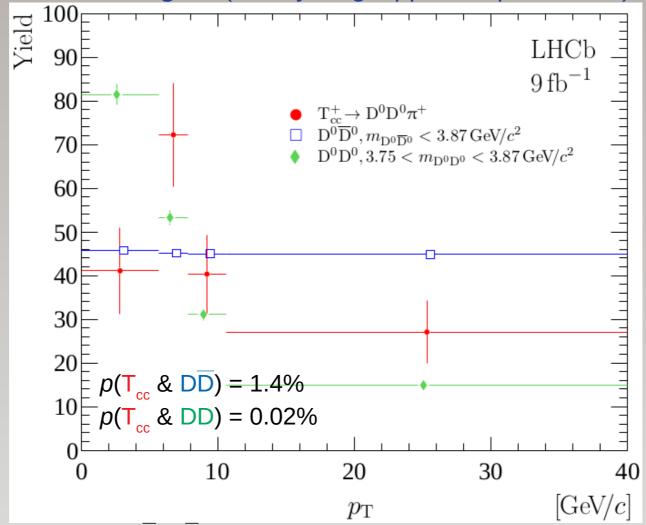
$$\Sigma(s) = \frac{s}{2\pi} \int_{s_{\text{th}}^*}^{+\infty} \frac{\varrho_{\text{tot}}(s')}{s'(s'-s)} ds' - \xi(m_{\text{U}}^2),$$

$$\frac{1}{\mathcal{A}_{\mathrm{U}}^{II}(s)} = m_{\mathrm{U}}^2 - s - |g|^2 \Sigma(s) + i |g|^2 \varrho_{\mathrm{tot}}(s)$$

For ρ functors

$$\int_{\mathcal{D}} |\mathfrak{M}|^2 d\Phi_3 = \frac{1}{2\pi (8\pi)^2 s} \int_{(m_2+m_3)^2}^{(\sqrt{s}-m_1)^2} ds_{23} \int_{s_{12}^-(s,s_{23})}^{s_{12}^+(s,s_{23})} |\mathfrak{M}|^2 ds_{12}$$

$$s_{12}^{\pm}(s, s_{23}) = m_1^2 + m_2^2 - \frac{(s_{23} - s + m_1^2)(s_{23} + m^2 + m_3^2)}{2s_{23}}$$
$$\pm \frac{\lambda^{1/2}(s_{23}, s, m_1^2)\lambda^{1/2}(s_{23}, m_2^2, m_3^2)}{2s_{23}}$$


Transverse momenta spectra

- Compare T_{cc}⁺ → D⁰D⁰X signal distributions with
 - D⁰D⁰ in 3.75<m_{DD}<3.87 GeV region

(presumably dominated by double-parton scattering)

- D⁰D

onumber in m_{DD} < 3.87 GeV region (mainly single pp → DD production)

Intriguing similarity with cc+cc

ccsq tetraquarks

Considering that mass of [cc] system should fall in between of c-quark and b-quark masses we may expect that mass of tetraquark states with s-quark scales similarly to that in D- and B-hadrons. And therefore one can make some very naive estimation for masses of $[cc\bar{s}q]$ and $[cc\bar{s}s]$ with respect to threshold. We may suppose that substitution of one light quark in $[cc\bar{u}d]$ to \bar{s} will increase its mass by either

$$m_{\Xi_c^{+(0)}} - m_{\Lambda_c^+} = 181(184) \,\text{MeV}/c^2 \,\text{or}$$
 (U.1)

$$m_{\Xi_b^{0(-)}} - m_{\Lambda_b^0} = 172(177) \,\text{MeV}/c^2$$
 (U.2)

while the corresponding threshold will be increased by either

$$m_{\rm D_s^+} - m_{\rm D^+(D^0)} = 99(104) \,\text{MeV}/c^2 \,\text{or}$$
 (U.3)

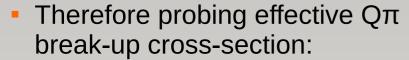
$$m_{\rm B_s^0} - m_{\rm B^0(B^+)} = 87(88) \,\text{MeV}/c^2 \,.$$
 (U.4)

Thus, the mass of $[cc\bar{s}q]$ state will be $80 - 89 \text{ MeV}/c^2$ above $D_s^+D^*$ threshold and therefore existence of a narrow state is unlikely.

Similarly we may suppose that substitution of $[\overline{u}\overline{d}]$ to $[\overline{s}\overline{s}]$ will increase its mass by either

$$m_{\Omega_c} - m_{\Lambda_c^+} = 409 \,\text{MeV}/c^2 \,\text{or}$$
 (U.5)

$$m_{\Omega_c} - m_{\Lambda_c^+} = 427 \,\text{MeV}/c^2$$
 (U.6)

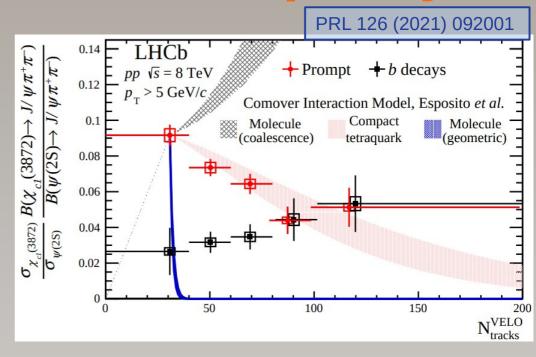

while the corresponding threshold will be increased by either

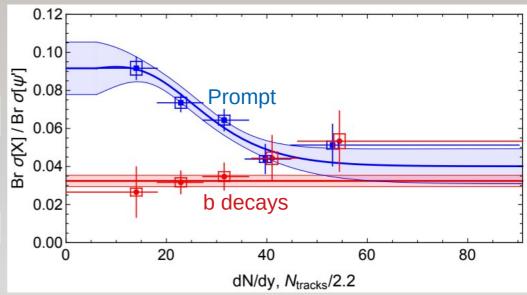
$$2 \times m_{\rm D_s^+} - m_{\rm D^+} - m_{\rm D^0} = 202 \,\text{MeV}/c^2 \,\text{or}$$
 (U.7)

$$2 \times m_{\rm B_s^0} - m_{\rm B^0} - m_{\rm B^+} = 175 \,\text{MeV}/c^2 \,.$$
 (U.8)

Production vs track multuplicity

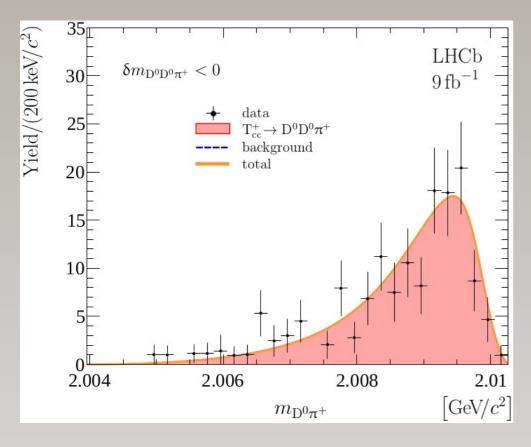
- Can expect that T_{cc}^{+} has some propoerties similar to χ_{c1} (3872)
- For $\chi_{c1}(3872)$ production a suppression wrt $\psi(2S)$ was observed at high track multiplicities
- Explained in comover model where $\chi_{c1}(3872)$ is broken by closely flying pions/gluons

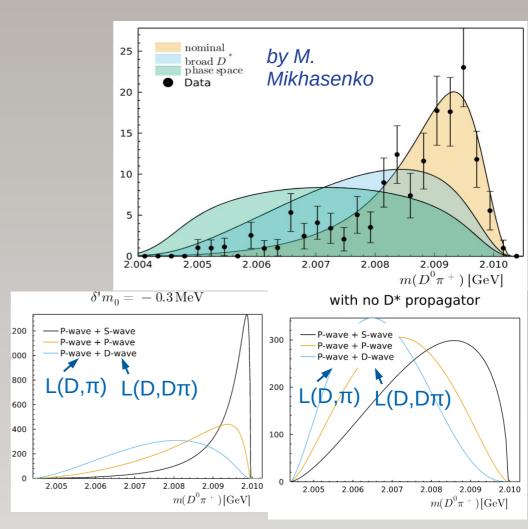



 $\langle v\sigma_{\psi'}
angle=3.9\pm0.8~{
m mb}$ and fractions $\langle v\sigma_X
angle=2.6\pm0.7~{
m mb}$ of Q out of reach of comovers

$$f_{\text{out},\psi'} = 0.40 \pm 0.03 \text{ and } f_{\text{out},X} = 0.18 \pm 0.04$$

more details in


Braaten et al., arXiv:2021.13499


Offshell D*+

- Integrate unitarized model over D⁰D⁰π⁺ and D⁰D⁰ masses
 - \rightarrow obtain D⁰ π ⁺ shape

Perfect agreement confirms

- T_{cc} → DD* decaying via off-shell D*
- and the $J^P=1^+$ assignement for T_{cc}

