New Physics with Muons g-2, Mu3e and more

Gavin Hesketh University of Birmingham 30/1/19

- dark matter, hierarchy problem, matter-antimatter asymmetry, neutrino masses, strong CP, gravity....

...but where is it?

- dark matter, hierarchy problem, matter-antimatter asymmetry, neutrino masses, strong CP, gravity....

...but where is it?

- dark matter, hierarchy problem, matter-antimatter asymmetry, neutrino masses, strong CP, gravity....

...but where is it?

There have been some surprises from the lepton sector:

- neutrino masses
- proton radius puzzle
- some ~3 σ effects from semi-leptonic hadron decays, R(K), R(D)
- 3.7σ effect in muon g-2

- dark matter, hierarchy problem, matter-antimatter asymmetry, neutrino masses, strong CP, gravity....

...but where is it?

There have been some surprises from the lepton sector:

- neutrino masses
- proton radius puzzle
- some ~3 σ effects from semi-leptonic hadron decays, R(K), R(D)
- 3.7σ effect in muon g-2

If there is some new physics in a loop, muons are a good tool: - $m_{\mu}^{2}/m_{e}^{2} \sim 42000$: muons much more sensitive to new physics

- stable enough to capture and store

Today:

- Fermilab Muon g-2

- Mu3e

... + a few other experiments

6

Spin Precession:

- the magnetic moment of a particle rotates around a B-field

 $\omega_s = \frac{gqB}{2}$ 2m

Spin Precession:

- the magnetic moment of a particle rotates around a B-field

g-2

$$\omega_s = \frac{gqB}{2m}$$

The magnetic moment of charged leptons:

- exactly 2 at tree level (Dirac)

G. Hesketh

Spin Precession:

- the magnetic moment of a particle rotates around a B-field

g-2

$$\omega_{s} = \frac{gqB}{2m} = \frac{(2+2a)}{2} \frac{qB}{m}$$

The magnetic moment of charged leptons:

- exactly 2 at tree level (Dirac)

JULIAN SCHWINGER

2·12·1918 --- 7·16·1994 CLARICE CARROL SCHWINGER 9·23·1917 --- 1·9·2011

UC

g-2

Spin Precession:

- the magnetic moment of a particle rotates around a B-field

$$\omega_{s} = \frac{gqB}{2m} = \frac{(2+2a)}{2} \frac{qB}{m}$$

The magnetic moment of charged leptons:

- exactly 2 at tree level (Dirac)

- first loop calculated by Schwinger in 1948 $g = 2 + \alpha/2\pi +$

- state of the art: *O(5) in QED* 12,672 diagrams! arXiv:1712.06060

For electrons, a completely determined by QED \rightarrow only depends on α

```
Recent measurement of \alpha

I/\alpha = 137.035999046(27)

Science, 13 Apr 2018: Vol. 360, Issue 6385, pp. 191-195

\rightarrow new prediction of a_e = 0.00115965218161(23)
```

II

For electrons, a completely determined by QED \rightarrow only depends on α

 Recent measurement of α
 $I/\alpha = 137.035999046(27)$

 Science, 13 Apr 2018: Vol. 360, Issue 6385, pp. 191-195

 \rightarrow new prediction of $a_e = 0.00115965218161(23)$

 PRD 97(2018)036001, PRL 100(2008)120801

 \rightarrow 2.5 σ difference

For electrons, a completely determined by QED \rightarrow only depends on α

 Recent measurement of α
 $I/\alpha = 137.035999046(27)$

 Science, 13 Apr 2018: Vol. 360, Issue 6385, pp. 191-195

 \rightarrow new prediction of $a_e = 0.00115965218161(23)$

 Compared to measured: $a_e = 0.00115965218073(28)$

 PRD 97(2018)036001, PRL 100(2008)120801

 $\rightarrow 2.5\sigma$ difference

For muons:

- larger muon mass \rightarrow QCD and EWK loops contribute - a long-standing disagreement with experiment: $a_{\mu} = 0.00116592089(63)$ (measured) $a_{\mu} \sim 0.00116591821(36)$ (prediction) PRD 73(2006)072003; KNT18, PRD97, 114025 \rightarrow 3.70 difference

... a lepton-flavour violating dark photon..?

...a model with a large muon EDM..? arXiv:1807.11484

Fermilab Muon g-2

UCL

Fermilab Muon g-2 experiment (E989) - factor 4 improvement over BNL (E821) result - precision of 140 ppb

 $BNL \rightarrow FNAL$ [50 (stat) + 33 (syst) \rightarrow 11 (stat) + 11 (syst)] x 10⁻¹¹

34 institutes, 185 collaborators UK: Lancaster, Liverpool, Manchester, UCL

GIZMODO

VIDEO REVIEW SCIENCE IO9 FIELD GUIDE EARTHER DESIGN PALEOFUTURE

PHYSICS

Why Particle Physicists Are Excited About This Mysterious Inconsistency

The magnetism of muons is measured as the short-lived particles circulate in a 700-ton ring. FERMILAB

Renewed measurements of muon's magnetism could open door to new physics

Forbes

6,854 views | Sep 8, 2018, 10:00am

Ask Ethan: Does The Measurement Of The Muon's Magnetic Moment Break The Standard Model?

Ethan Siegel Senior Contributor Starts With A Bang Senior Contributor Science The Universe is out there, waiting for you to discover it.

Scientific breakthrough could be as simple as measuring the wobble of a muon

By Don Lincoln

CINNI

① Updated 1648 GMT (0048 HKT) February 13, 2018

FRONTLINE

gizmodo.com

Measuring Muon g-2

UCL

Put muons in a magnetic field, measure precession frequency

$$\omega_{s} = \frac{gqB}{2m} = \frac{(2+2a_{\mu})}{2}\frac{qB}{m}$$

Measuring Muon g-2

UCL

Put muons in a magnetic field, measure precession frequency

$$\omega_{s} = \frac{gqB}{2m} = (\mathbf{1} + \mathbf{a}_{\mu})\frac{qB}{m}$$

G. Hesketh

Measuring Muon g-2

UCL

Put muons in a magnetic field, measure precession frequency

$$\omega_{s} = \frac{gqB}{2m} = (\mathbf{1} + \mathbf{a}_{\mu})\frac{qB}{m}$$

Muons decay...

 \rightarrow Use a circular magnetic storage ring (7.1 m radius)

Cyclotron frequency:

$$\omega_{c} = \frac{qB}{m} \quad \Rightarrow \quad \omega_{a} = \omega_{s} - \omega_{c} = a_{\mu} \frac{qB}{m}$$

Measuring Muon g-2

UCL

Put muons in a magnetic field, measure precession frequency

$$\omega_{s} = \frac{gqB}{2m} = (\mathbf{I} + \mathbf{a}_{\mu})\frac{qB}{m}$$

Muons decay...

 \rightarrow Use a circular magnetic storage ring (7.1 m radius)

Cyclotron frequency:

$$\omega_{c} = \frac{qB}{m} \quad \Rightarrow \quad \omega_{a} = \omega_{s} - \omega_{c} = a_{\mu} \frac{qB}{m}$$

Use "magic momentum" 3.09 GeV

$$\omega_a = -\frac{q}{m} \left[a_{\mu} B - \underbrace{a_{\mu} - \frac{I}{\gamma^2 - I}}_{q} \beta \times E \right]$$

UCL

BNL magnet moved to Fermilab in 2013 - new trackers & calorimeters

- higher intensity, cleaner beam \rightarrow more stats

- *Main positron energy measurement made using 24 calorimeters* fast response lead-flouride Cherenkov crystals (9x6 array, each crystal 25x25x140mm)
- resolution 2.3% at 3 GeV

- *Main positron energy measurement made using 24 calorimeters* fast response lead-flouride Cherenkov crystals (9x6 array, each crystal 25x25x140mm)
- resolution 2.3% at 3 GeV

Main positron energy measurement made using 24 calorimeters

- fast response lead-flouride Cherenkov crystals (9x6 array, each crystal 25x25x140mm)
- resolution 2.3% at 3 GeV

B-field

Need highly uniform B-field around the storage ring

- magnetic field was shimmed to high precision
- monitored using NMR probes
 - plunge probes and trolley runs

g-2 Magnet in Cross Section

B-field uniformity 3x better than BNL (2x was the goal)

Simplest fit: 5 parameters

- exponential decay (2 parameters)

- with a superimposed sine wave (3 parameters)

UCL

New Trackers

UCL

UK contributed new tracking detectors in front of two calorimeters - 8 modules, 4 rows (2 x stereo) per module, 32 straws per row

Improved Wiggle

χ²/ndf: 8519/4165

precision: 1.35 ppm

10⁷

10⁶

10⁵

30

First data-taking run complete:

- 5 months running, > 2x Brookhaven stats (took 5 years!)

- publish in 2019

Runs in 2019/20 will accumulate ~20 x BNL \rightarrow could push significance to ~5-10 σ

Further experimental confirmation? → *Planned g-2 experiment at J-PARC* - different techniques, different systematics

UCL

220

Further experimental confirmation? → *Planned g-2 experiment at J-PARC* - different techniques, different systematics

How about the theory?

SUSY?

- Needs $\mu > o$, 'light' SUSY-scale (Λ) and/or large tan β ...already ruled out by the LHC?
- However, SUSY does not have to be minimal

Many other ideas out there, eg:

- I TeV Leptoquark Bauer + Neubert, PRL 116 (2016)
- 2 Higgs doublet model Stockinger et al., JHEP 1701 (2017) 007
- axion-like particle Marciano et al, PRD 94 (2016) 115033
- dark photon eg Feng et al, PRL 117 (2016) 071803

If the discrepancy goes away, will set tight limits on these new physics scenarios

See also Thomas Teubner's talk at the UK HEP Forum, Nov 2018

 $a_{\mu}^{\rm SUSY} \simeq sgn(\mu) \, 130 \times 10^{-11} \, \tan \beta \left(\frac{100 \, {\rm GeV}}{\Lambda_{\rm SUSY}} \right)^2$

It may not be the clear sign of new physics we wanted... - complementary measurements needed to resolve model dependency.

- \rightarrow EDM experiments
- \rightarrow cLFV experiments

Fundamental particles can also have an EDM

- zero in SM (slight shift due to loops)
- more significant shifts with BSM loops

Existence of $EDM \rightarrow additional$ source of CP violation

Fundamental particles can also have an EDM

zero in SM (slight shift due to loops)
more significant shifts with BSM loops

Existence of $EDM \rightarrow additional$ source of CP violation

A non-zero muon EDM would lead to out-of-plane precession \rightarrow 100x improvement in limit from Fermilab g-2 - an upgrade would push limit further...

Development work for proton EDM ring underway - part of CERN's "Physics Beyond Colliders" programme.

$$\vec{l} = \eta \frac{Qe}{2mc} \vec{s}$$
 $\vec{\mu} = g \frac{e}{2mc}$

Charged Lepton Flavour Violation

CLFV decay

Neutrino oscillations violate lepton flavour conservation \rightarrow technically possible in charged lepton sector ...but suppressed by ~10⁻⁵⁰

Charged Lepton Flavour Violation

Neutrino oscillations violate lepton flavour conservation \rightarrow technically possible in charged lepton sector ...but suppressed by ~10⁻⁵⁰

Put BSM physics in the loop \rightarrow increase the rate

CLFV decay

Any observation of cLFV is new physics!

Many BSM models include charged lepton flavour violation - leptoquarks, compositeness, Higgs doublets, heavy neutrinos... ... or invoke it for leptogenesis of matter-antimatter asymmetry

CLFV

Many BSM models include charged lepton flavour violation - leptoquarks, compositeness, Higgs doublets, heavy neutrinos... ... or invoke it for leptogenesis of matter-antimatter asymmetry

Probe LQ masses up to 300 TeV cf I (120) TeV at HL-LHC (LHCb)

Sensitivity to flavour-violating Higgs couplings

Updated from A. de Gouvea, P. Vogel, arXiv:1303.4097

 10^{2}

Contact

10

SINDRUM-I (1988) [1.0e-12]

Updated from A. de Gouvea, P. Vogel, arXiv:1303.4097

Dates are time the last data was taken for existing limits or the start of data taking (where known) for projected limits

Limits are at 90% C.L.

 10^{-1}

10⁻²

Dipole

TeV $\mu N \rightarrow e N$ projected limit for $\mu \rightarrow e\gamma$ Effective Lagrangian projected limit for $\mu \rightarrow eee$ projected limit for Mu2e (2021)[6.0e-17] de Gouvea & Vogel, arXiv 1303.4097 10⁴ $\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + h.c.$ $\frac{\kappa}{(1+\kappa)\Lambda^2}\bar{\mu}_L\gamma_\mu e_L\left(\bar{u}_L\gamma^\mu u_L + \bar{d}_L\gamma^\mu d_L\right) + h.c.\,.$ COMET-I (2021) [7.2e-15] MEG-II (2019) [4.0e-14] MEG (2016) [4.2e-13] and the second se Mu3e-I (2020) [4.6e-15] Step-change in sensitivity in coming years 10^{3} SINDRUM-11 (2000) [7.00-13 (AU)] ... probing mass scales up to 10,000 TeV

Can help resolve model dependency in g-2: Rate (CLFV) $\sim g^2 \times \theta_{e\mu}^2 \times \left(\frac{m_{\mu}}{\Lambda}\right)^2$ $a_{\mu} \sim g^2 \times \left(\frac{m_{\mu}}{\Lambda}\right)^2$

MEG-II @ PSI:

physics in 2019
x10 on limit
→ 10⁻¹⁴ after 3 years
11 institutes, 75 collaborators
no UK involvement

Muze @ FNAL
starting 2022 (after g-2)
x10⁴ on limit

→ 10⁻¹⁷ after ~4/5 years

40 institutes, 242 collaborators
Liverpool, Manchester, RAL, UCL
COMET @ J-PARC similar (Imperial)

MEG-II @ PSI: - physics in 2019 - x10 on limit \rightarrow 10⁻¹⁴ after 3 years 11 institutes, 75 collaborators - no UK involvement

Muze @ FNAL - starting 2022 (after g-2) - $x10^4$ on limit $\rightarrow 10^{-17}$ after ~4/5 years

40 institutes, 242 collaborators - Liverpool, Manchester, RAL, UCL COMET @ J-PARC similar (Imperial)

Muze @ PSI
phase 1 (2020) & 2 (2025)
x10⁴ on limit

→ 10⁻¹⁶ after phase 2

II institutes, 60 collaborators
Liverpool, Bristol, Oxford, UCL

MEG-II @ PSI:
physics in 2019
x10 on limit

→ 10⁻¹⁴ after 3 years

II institutes, 75 collaborators
no UK involvement

Muze @ FNAL
starting 2022 (after g-2)
x10⁴ on limit

→ 10⁻¹⁷ after ~4/5 years

40 institutes, 242 collaborators
Liverpool, Manchester, RAL, UCL
COMET @ J-PARC similar (Imperial)

Muze @ PSI
phase 1 (2020) & 2 (2025)
x10⁴ on limit

→ 10⁻¹⁶ after phase 2

II institutes, 60 collaborators
Liverpool, Bristol, Oxford, UCL

Complementary experiments:

- Mu2e involves quark and lepton couplings
- Mu3e purely leptonic, can also search for dark photons etc

One CLFV interaction in 10¹⁶ muon decays is like...

looking for one specific grain of sand

Stop muons on an Al target - x-ray emission from capture → normalisation

Signal of neutrino-less conversion: mono-energetic electron

 $E_e = m_{\mu} - E_{bind} - E_{recoil} = 105.67 - 0.47 - 0.22 MeV = 104.98 MeV$

Mu2e

Stop muons on an Al target

- x-ray emission from capture \rightarrow normalisation

Signal of neutrino-less conversion: mono-energetic electron

UCL

Prompt backgrounds

(radiative nuclear capture, d.i.f., pions, protons).

- Curved solenoid transport channel
- Pulsed beam with strong extinction factor $(<10^{-9})$

Cosmics: cosmic veto detector

Mu2e

Muon decay in orbit (µN→evvN) - precise momentum resolution

Straw tracker (similar to g-2 trackers) - hollow cylinder design

Mu2e will follow g-2

- uses same beamline at Fermilab Muon Campus - first beam 2020, data-taking through 2025

Possible upgrade using PIP-II beam → further factor of 10 on the limit arXiv:1802.02599

Michel Decay

Michel Decay + Conversion

Muze @ PSI

DC beam of up to 10^{10} µ/s on target, triggerless DAQ.

Photon conversion:

- vertex resolution 200 µm
- Scintillating fibres (<ins) Internal conversion

- momentum resolution 0.5 MeV
 - ... in the scattering-dominated regime (E<53 MeV)

UCL

Muze @ PSI

DC beam of up to $10^{10} \mu$ /s on target, triggerless DAQ.

Photon conversion:

- vertex resolution 200 μm
- Scintillating fibres (<ins) and tiles (<100ps) *Internal conversion*
- momentum resolution 0.5 MeV
 - ... in the scattering-dominated regime (E<53 MeV)

Material budget critical: - 50 μm HV-MAPS - 25 μm support

- 25 µm flex-print
- 12 μm aluminium traces
- 10 µm adhesive
- gaseous helium cooling \rightarrow 0.1% X per tracking layer

MuPix8 development:

81x80 µm pixels, 128x200 pixels per chip
178 M channels for Phase 1.
1.25 Gbit/s serial data outputs
~210mW/cm² power consumption

Test-beam results:

- >99.5% efficiency
- noise rate per pixel ~0.2 Hz
- time resolution ~14.5 ns
- measured track residuals ~ $35\mu m (80/\sqrt{12} = 23 \mu m)$

Fibre ribbons in central barrel:

- 4 layers of ~250µm 12 x SiPM arrays (LHCb type)
- time resolution <400ps on prototype

Scintillating tiles in the recurl stations:

- 6.5x6.5x5 mm³
- total of 6272 channels in Phase 1
- resolution of ~35ps from prototype

61 G. Hesketh

Mu3e DAQ

Muze will run a triggerless DAQ

occupancy up to 5.2 MHz per sensor
max bandwidth 740 Mbit/s (x4 requirement)
→ data output up to 1 TB/s (phase 2)

Need to find and fit billions of tracks per second... → Online event reconstruction on GPU farm ~50 GPUs

- data reduction of ~1000
 - \rightarrow output 50-100MB/s

At UCL we are developing the clock & control system - optical transmission of: - clock signal to frontends - control signals (start run, reset, ...) - active splitting using Firefly connectors A [TeV]

Currently under construction, first data 2020

Updated from A. de Gouvea, P. Vogel, arXiv:1303.4097

UCL

New physics must be out there... but where?

 \rightarrow reach further through loops, with high precision measurements

Muon physics complements and extends major research themes:

- BSM searches, CPV in the lepton sector and leptogenesis of matter-antimatter asymmetry

g-2:

- first publication planned in 2019, running for 2 more years to reach 20x BNL stats. - options for extended / upgraded running, and follow-on measurements incl EDM

cLFV:

Mu2e and Mu3e aiming for 10⁴ improvement in sensitivity over current limits
 probe mass scales up to ~10⁴ TeV

- complementary physics, and complementary to g-2

Going to be an exciting few years!

~~ fin ~~

Theory limited by hadronic LO corrections, a_{μ}^{HNLO} Traditional calculation from ee \rightarrow hadrons \rightarrow need x2 improvement to keep up with g-2

MUonE will measure space-like region: → scattering of high energy mu (150 GeV) on e

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_{0}^{1} (1-x) \Delta \alpha_{had}(t(x)) dx$$

Schedule:

2017: test beam at CERN H8 Beam Line 2019: LOI to SPSC 2020/1: construction & installation 2022/4: (after LHC LS2) start data taking

a_{μ}^{SM}	=	$a^{QED}_{\mu} +$	$-a_{\mu}^{had}+$	a_{μ}^{EW}
μ		μ .	μ ·	μ

	Value $(\times 10^{-11})$ units
QED $(\gamma + \ell)$	$116584718.951\pm0.009\pm0.019\pm0.007\pm0.077_{\alpha}$
HVP(lo) [20]	6923 ± 42
HVP(lo) [21]	6949 ± 43
HVP(ho) [21]	-98.4 ± 0.7
HLbL	105 ± 26
\mathbf{EW}	154 ± 1
Total SM $[20]$	$116591802\pm42_{ ext{H-LO}}\pm26_{ ext{H-HO}}\pm2_{ ext{other}}(\pm49_{ ext{tot}})$
Total SM $[21]$	$116591828\pm43_{\rm H\text{-}LO}\pm26_{\rm H\text{-}HO}\pm2_{\rm other}(\pm50_{\rm tot})$

[T. Blum et al., arXiv:1311.2198]

HVP calculated using dispersion relation plus experimental data from ee→badrons → MUonE will improve experimental input

See Phiala Shanahan's talk at ICHEP https://indico.cern.ch/event/686555/timetable/#20180711

 \rightarrow need x2 improvement to keep up with experiment

Muon g-2 Theory Initiative underway https://wwwth.kph.uni-mainz.de/g-2/

Lattice starting to contribute to LBL & HVP T. Blum et al., arXiv:1801.07224

$$a_{\mu} = \frac{\frac{\omega_{a}}{\omega_{p}} \frac{\mu_{p}}{\mu_{e}} \frac{m_{\mu}}{m_{e}} \frac{g_{e}}{2}}{\frac{\omega_{p}}{\omega_{p}} \frac{\mu_{p}}{\mu_{e}} \frac{m_{\mu}}{m_{e}} \frac{g_{e}}{2}}$$

Category	E821 [ppb]	E989 Improvement Plans	E989 [ppb]		
Gain changes	120	 Better laser calibration Low-energy threshold 	20	Detector Team	
Pileup	80	 Recording low-energy samples Segmented Calorimeters 	40		
Lost muons	s 90 • Better collimation in ring		20	Ring	
СВО	70	 Higher n value Better match of beamline to ring 	< 30	Team	
E and pitch corrections	tions 50 • Improved tracker • High precision storage ring simulation		30	Detector Team	
Total	180	Quadrature Sum for δωa (syst.)	70		