What Lattice QCD can do for experiment

Christine Davies University of Glasgow HPQCD collaboration

Birmingham Nov 2014

QCD is a key part of the Standard Model but quark confinement is a complication/interesting feature.

Cross-sections calculated at high energy using QCD pert. th. with ~3% errors. Also parton distribution function and hadronisation uncertainties.

But (some) properties of hadrons much more accurately known and calculable in lattice QCD can test SM and determine parameters very accurately (1%).

Weak decays probe meson structure and quark couplings

Need precision lattice QCD to get accurate CKM elements to test Standard Model (e.g. is CKM unitary?). If V_{ab} known, compare lattice to expt to test QCD

Lattice QCD = fully nonperturbative, based on Path Integral formalism

basic integral $\int \mathcal{D}U\mathcal{D}\psi\mathcal{D}\overline{\psi}\exp(-\int \mathcal{L}_{QCD}d^4x)$

• Generate sets of gluon fields for Monte Carlo integrn of Path Integral (inc effect of u, d, s (+ c) sea quarks)

- Calculate averaged "hadron correlators" from valence q props.
- Fit as a function of time to obtain masses and simple matrix elements
- Determine a and fix m_q to get results in physical units.

• extrapolate to $a = 0, m_{u,d} = phys$ for real world **now at m_{phys}** Hadron correlation functions ('2point functions') give masses and decay constants. $\langle 0|H^{\dagger}(T)H(0)|0\rangle = \sum A_n e^{-m_n T} \stackrel{\text{large}}{\to} A_0 e^{-m_$ \boldsymbol{n} masses of all CDhadrons with quantum $f_n^2 m_n$ $A_n = \frac{|\langle 0|H|n\rangle|^2}{2m_n}$ numbers of H

decay constant parameterises amplitude to annihilate - a property of the meson calculable in QCD. Relate to experimental decay rate. 1% accurate experimental info

1% accurate experimental info.for f and m for many mesons!Need accurate determinationfrom lattice QCD to match

Darwin@Cambridge, part of STFC's HPC facility for theoretical particle physics and astronomy - DiRAC II

State-of-the-art commodity cluster: 9600 Intel Sandybridge cores, infiniband interconnect, fast switch and 2 Pbytes storage

www.dirac.ac.uk

Allows us to calculate quark propagators rapidly and store them for flexible re-use.

Example parameters for calculations now being done with 'staggered' quarks. / "2nd generation"

Example (state-of-the-art) calculation

The gold-plated meson spectrum

older predcns: I. Allison et al, hep-lat/0411027, A. Gray et al, hep-lat/0507013

Lattice QCD is best method to determine quark masses $m_{q,latt}$ determined very accurately by fixing a meson massto be correct. e.g. for m_c fix M_{η_c} *massesIssue is conversion to the \overline{MS} schemeimportant for

• Direct method

 $m_{\overline{MS}}(\mu) = Z(\mu a) m_{latt}$

masses important for Higgs crosssections

Calculate Z perturbatively or partly nonperturbatively.

• Indirect methods: (after tuning m_{latt}) match a quantity from lattice QCD to continue pert. th. in terms of \overline{MS} mass

e.g. q²-derivative moments of current-current correlators (vac. pol.function) for heavy quarks known through α_s^3 . Calc. on lattice as time-moments of 'local' meson correlation function Chetyrkin et al, 0907.2110

HPQCD + Chetyrkin et al, 0805.2999, C. Mcneile et al, HPQCD,1004.4285

Most accurate to use pseudoscalar correlator time-moments:

 a^2 (GeV⁻²)

new 2+1+1 results agree:1408.4169

Aim for same 'overview' as for masses. Note different scale.

DECAY CONSTANT (GEV

B meson decay constants: results from NRQCD b and physical u/d quarks HPQCD: R Dowdall et al,

Enables SM branching fraction to be determined for:

 $Br(B_s \to \mu^+ \mu^-) = A f_{B_s}^2 M_{B_s} |V_{tb}^* V_{ts}|^2 \tau(B_s)$

2013: Updated result from lattice QCD f_{Bs} : $3.47(19) \times 10^{-9}$

HPQCD: R Dowdall et al, 1302.2644. (including $\Delta \Gamma$ effect in time-integration)

LHCb: Nov. 2012

Anomalous magnetic moment of the muon

Error in SM calc. dominated by that from hadronic vacuum polarisation - improve in lattice QCD?

 $10.5(2.6) \times 10^{-10}$

HLbL

Hadronic vacuum polarisation contribution to anomalous magnetic moment of muon $(g-2)_{\mu}/2$ B.Chakraborty et al, HPQCD: 1403.1778 a_{μ} differs between expt and the SM by $25(9) \times 10^{-10}$ *new physics*? Uncertainty dominated by that from HVP contribution calculated from expt for $R_{e^+e^-}$ Can we improve ahead of E989 run? On lattice, calculate : $a_{\mu,\text{HVP}}^{(\text{f})} = \frac{\alpha}{\pi} \int_0^\infty dq^2 f(q^2) (4\pi\alpha Q_{\text{f}}^2) \hat{\Pi}_{\text{f}}(q^2)$ very steep function, polarisation so small q^2 dominates function

Determine the q² derivative moments of Π at q²=0 from time moments of vector correlator and use Pade Approximants to evaluate the integral

At large times vector correlator gives information about the ϕ meson - agrees well with expt for physical u/d

u/d calculation underway. Much noisier - currently getting $a_{\mu}^{HVP,LO} = 662(35) \times 10^{-10}$ Expect to reduce error to 2-3% in current run. Plan : 10x statistics in collaborn with MILC - should reduce errors below 1% by end 2015

Conclusion

• Lattice QCD results for gold-plated hadron masses and decay constants now providing stringent tests of QCD/SM, QCD parameters to 1% and input to BSM constraints.

Future

- Now working on '2nd generation' gluon configs with charm in the sea and $m_{u,d}$ at physical value.Will take *a* down below 0.05fm (so b quarks are 'light') and increase statistics by a factor of 10 on coarser lattices.
- Aim for 1% errors for B and B_s physics
- Improve noisier calculations such as muon g-2, calcs. inc 'disconnected diagrams', exotic hadrons etc.
 - We need DiRAC III in 2015-16 to do this ...

Spares

Look at error budgets to see how things will improve in future ... 1302.2644: calculation of B, B_s masses and decay constants errors divided into extrapolation and other systematics:

Error %	Φ_{B_s}/Φ_B	$M_{B_s} - M_B$	Φ_{B_s}	Φ_B
EM:	0.0	1.2	0.0	0.0
a dependence:	0.01	0.9	0.7	0.7
chiral:	0.01	0.2	0.05	0.05
g:	0.01	0.1	0.0	0.0
stat/scale:	0.30	1.2	1.1	1.1
operator:	0.0	0.0	1.4	1.4
relativistic:	0.5	0.5	1.0	1.0
total:	0.6	2.0	2.0	2.1

for different quantities different systematics are important