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QCD is a key part of the Standard Model but quark 
confinement is a complication/interesting feature.

CDF
Cross-sections calculated at 
high energy using QCD pert. th. 
with ~3% errors. Also parton 
distribution function and 
hadronisation uncertainties.

But (some) properties of hadrons 
much more accurately known 
and calculable in lattice QCD -  
can test SM and determine 
parameters very accurately (1%).
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Weak decays probe meson structure and quark couplings

Need precision lattice QCD to get accurate CKM 
elements to test Standard Model (e.g. is CKM unitary?). 

Vus

K

ν

Expt = CKM x theory(QCD)

If  Vab known, compare lattice to expt to test QCD

Br(M ! µ⌫) / V 2
abf
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Lattice QCD =  fully nonperturbative, 
based on Path Integral formalism

• Generate sets of gluon fields for 
Monte Carlo integrn of Path Integral 
(inc effect of u, d, s (+ c) sea quarks)
• Calculate averaged “hadron 
correlators” from valence q props. 

• Determine      and fix       to get 
results in physical units.

a mq

• Fit as a function of time to obtain 
masses and simple matrix elements

a
• extrapolate to                               
for real world **now at mphys** 

a = 0, mu,d = phys

Z
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Hadron correlation functions (‘2point functions’) give 
masses and decay constants. 

h0|H†(T )H(0)|0i =
X

n

Ane
�mnT

masses of all 
hadrons with 
quantum 
numbers of H|h0|H|ni|2

2mn

decay constant parameterises amplitude to annihilate - a 
property of the meson calculable in QCD. Relate to 
experimental decay rate. 1% accurate experimental info. 

for f  and m for many mesons! 
Need accurate determination 
from lattice QCD to match

QCD HH

=
f2
nmn

2
An =

large! A0e
�m0T

T



Darwin@Cambridge,  
part of STFC’s HPC facility 
for theoretical particle physics 
and astronomy - DiRAC II

State-of-the-art commodity 
cluster: 9600 Intel Sandybridge 
cores, infiniband interconnect, 
fast switch and 2 Pbytes storage

Allows us to calculate 
quark propagators 
rapidly and store them 
for flexible re-use.

www.dirac.ac.uk

http://www.dirac.ac.uk


Example parameters for calculations now being done with 
‘staggered’ quarks.

real 
world

mass 
of u,d 
quarks

Volume:

mu,d ⇡ ms/10

mu,d ⇡ ms/27

“2nd generation” 
lattices inc. c 
quarks in sea

m⇡L > 3

HISQ = Highly 
improved 
staggered quarks -
very accurate 
discretisation 

135 MeV
m⇡0 =

E.Follana et al, 
HPQCD, hep-lat/
0610092.
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Example (state-of-the-art) calculation 

R. Dowdall et al, HPQCD, 1303.1670.

Extract meson mass and 
amplitude=decay constant 
from correlator for multiple 
lattice spacings and mu/d. 
Very high statistics

Convert decay constant 
to GeV units using       to 
fix relative lattice 
spacing. Very small 
discretisation errors. 
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The gold-plated meson spectrum 

2008

1207.5149; 
0909.4462

HPQCD 
1008.4018 
error 3 MeV 
- em effects 
important!

HPQCD 
1112.2590
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older predcns: I. Allison et al, hep-lat/0411027, A. Gray et al, hep-lat/0507013
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Lattice QCD is best method to determine quark masses
mq,latt determined very accurately by fixing a  meson mass 
to be correct. e.g. for mc fix M⌘c

Issue is conversion to the          schemeMS
•  Direct method

mMS(µ) = Z(µa)mlatt

Calculate Z perturbatively or partly nonperturbatively. 
• Indirect methods: (after tuning           ) match a quantity 
from lattice QCD to contnm pert. th. in terms of        mass       

J J

 Chetyrkin et al, 0907.2110

e.g. q2-derivative moments of current-current 
correlators (vac. pol.function) for heavy 
quarks known through       . 
Calc. on lattice as time-moments of ‘local’ 
meson correlation function

mlatt
MS

↵3
s

 HPQCD + Chetyrkin et al, 0805.2999, C. Mcneile et al, HPQCD,1004.4285 

*masses 
important for 
Higgs cross-
sections*



Most accurate to use pseudoscalar correlator time-moments:

G(t) = a6
�

⇤x

(amc)2 < 0|j5(⌦x, t)j5(0, 0)|0 >

Gn =
�

t

(t/a)nG(t)

J J

t
Rn,latt = G4/G(0)

4 n = 4

=
am�c

2amc
(Gn/G(0)

n )1/(n�4) n = 6, 8, 10 . . .

ratio to results with no 
gluon field improves disc. 
errors

extrapolate first 4 moments to 
a=0 and fit to contnm pert. th.
gives AND �s(µ)

mc(mc) = 1.273(6)GeV

From 2+1 configs:

↵s(Mz) = 0.1183(7)

6

FIG. 1: The ratio of simulation results for reduced moments eval-
uated with (nf = 4) and without (nf = 3) c quarks in the quark
sea. These agree, within errors, with expectations perturbation the-
ory (dashed lines).

FIG. 2: Lattice-spacing dependence of reduced moments Rn for
masses within 5% of m⌘c , and n = 4, 6, 8, 10. The dashed lines
show our fit for the average of these masses, and the points at a = 0
are the continuum extrapolations of the lattice data.

1.291(9), 1.528(10), 1.373(6), 1.310(6) for n = 4, 6, 8, 10,
respectively. The ratio of these results to the n

f

= 3 results
from our previous paper are plotted in the figure, and agree
with perturbative predictions to within errors of ±0.5–1%.

The dominant sources of error for our results are listed in
Table XXX. The most important systematics, by a consider-
able margin, are due to the truncation of perturbation theory
and to our extrapolation to a2 = 0. The pattern of errors is as
expected. As in our previous analysis, the a2 extrapolations
are not large: see Figure 2. Also the dependence of our results
on the light sea-quark masses is quite small and independent
of the lattice spacing: see Figure 3.

MORE COMING ....

FIG. 3: Light sea-quark mass dependence of reduced moments Rn

for mh = mc, and n = 4, 6, 8, 10. Results are shown for our two
coarsest lattices: a = 0.12 fm (three points in blue) and a = 0.09 fm
(two points in red). The dashed lines show the corresponding results
from our fit. Note that the slope of the lines is independent of the
lattice spacing, as expected.

E. nf = 3 and nf = 4 Results

III. COMPARISON WITH OTHER DETERMINATIONS

IV. CONCLUSIONS AND OUTLOOK

Appendix A: Light Sea-Quark Mass Dependence

a. msea Dependence

We vary the u, d, s sea-quark masses in our simulations
around their physical values. These masses enter quadratically
in perturbation theory, but quadratic dependence is negligible
given the very small masses involved. The dominant impact of
the light sea-quark masses is through linear terms induced by
(nonperturbative) chiral symmetry breaking. Chiral symme-
try breaking enters through the chiral condensate in the OPE
(Eq. (4)), but that contribution is negligible compared to the
gluon condensate, which itself is negligible.

m(µ)

mb(mb) = 4.164(23)GeV

*new* 2+1+1 results agree:1408.4169
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FIG. 4. Results for the MS c mass and coupling from nf = 4 fits
that treat perturbative coefficients beyond order N as fit parameters,
with priors specified by Eq. (24). The gray bands and dashed lines
indicate the means and standard deviations of our final results, which
correspond to N = 3.

FIG. 5. The ratio of the c and s quark masses as a function of the
squared lattice spacing (in units of the bare c mass). The data come
from simulations at lattice spacings of 0.16, 0.12, 0.09 and 0.06 fm,
after tuning the s and c masses to reproduce physical values for the ⌘s
and ⌘c masses on each ensemble. The errors for the data points are
highly correlated, as they come primarily from uncertainties in w0,
m⌘s , and m⌘c . The red dashed line shows our fit, which has a �2 per
degree of freedom of 0.21 for 9 degrees of freedom (p-value of 0.99).
The black dashed line and gray band show the mean value and stan-
dard deviation for our result extrapolated to zero lattice spacing.

III. mc/ms FROM nf = 4

As discussed above (Section II A), we can use lattice QCD
to extract ratios of MS quark masses completely nonperturba-
tively [33], since ratios of quark masses are scheme and scale

independent: for example,

m
0c

m
0s

����
lat

=

mc(µ, nf )

ms(µ, nf )

����
MS

+ O((amc)
2↵s). (42)

While ratios of light-quark masses can be obtained from chiral
perturbation theory, only lattice QCD can produce nonpertur-
bative ratios involving heavy quarks. These ratios are very
useful for checking mass determinations that rely upon per-
turbation theory, as illustrated in [2]. They also allow us to
leverage precise values of light-quark masses from very accu-
rately determined heavy-quark masses.

In [33] we used nonperturbative simulations, with nf = 3

sea quarks, to determine the s quark’s mass from the c quark’s
mass and the ratio mc/ms. We repeat that analysis here, but
now for nf = 4 sea quarks, using the tuned values of the bare
s and c masses for each of our lattice ensembles: amtuned

0s and
amtuned

0c in Table II, respectively. We expect

amtuned

0c

amtuned

0s

=

mc

ms

 
1 + hm

�msea

uds

ms
+ ha2,m

�msea

uds

ms

✓
mc

⇡/a

◆
2

+h
1

↵s(⇡/a)

✓
mc

⇡/a

◆
2

+

Na2X

j=2

hj

✓
mc

⇡/a

◆
2j
1

A ,

(43)

where again we ignore �msea

c and �m2 dependence since they
are negligible. We fit the data from Table II using this formula
with the following fit parameters and priors:

hm = 0 ± 0.1, ha2,m = 0 ± 0.1, (44)
h
1

= 0 ± 6, hj = 0 ± 2 (j > 1). (45)

The extrapolated value mc/ms is also a fit parameter. We set
Na2

= 5, but get identical results for any Na2 � 2.
The result of this fit is presented in Fig. 5, which shows

the a2 dependence of the lattice results. The sensitivity of our
new results to a2 is about half what we saw in our previous
analysis. Our new fit is excellent and gives a final result for
the mass ratio of:

mc(µ, nf )

ms(µ, nf )

= 11.652(65). (46)

The leading sources of error in this result are listed in Ta-
ble IV. These are dominated by statistical errors and uncer-
tainty in the ⌘s mass. Many other potential sources of error,
such as uncertainties in the lattice spacing, cancel in the ratio.

Note that the discussion in Appendix A and Eq. (A19),
in particular, implies that the leading effect of mistuned sea-
quark masses cancels in ratios of quark masses. This is sub-
stantiated by our fit which makes parameter hm negligibly
small (�0.0080(34)). Setting hm = 0 shifts our result for
mc/ms by only �/7.

Our result is about two standard deviations lower than
the recent result, 11.747(19)

�
+59

�43

�
, computed by the Fermi-

lab/MILC collaboration (using many of the same configura-
tions we use) [28]. Our analysis uses a different scheme for

Improvement in result 
clear as more orders 
added in contnm pert. 
theory. 
HPQCD,1408.4169

1408.5768

1408.4169

1302.3739

1311.2837

Different lattice methods 
for mb agree. 
Weighted average (grey 
band): 4.178(14) GeV

H ! bb
1404:0319: impact on 
accuracy of 



mc/ms

Obtained directly from lattice QCD if same quark formalism 
is used for both quarks.  
Ratio is at same     and for same nf.

�
mq1,latt

mq2,latt

⇥

a=0

=
mq1,MS(µ)
mq2,MS(µ)

HPQCD: 0910.3102; 1004.4285,1408.4169

Not possible any other way ...

allows 1% accuracy in ms (94.0(6) MeV)

Quark mass ratios

µ
10

the ⇥c and ⇥b and the equation:

mb(µ, nf )
mc(µ, nf )

=
mexp

�b
w(mexp

�b
, 0)

mexp
�c w(mexp

�c , 0)
. (41)

It might seem simpler to fit m0h directly, rather than
the ratio w; but using w significantly reduces the m�h

dependence (and therefore our extrapolation errors), and
also makes our results quite insensitive to uncertainties
in our values for the lattice spacing.

We parameterize function w with an expansion mod-
eled after the one we used to fit the moments:

w(m�h ,a) = Zm(a)

⇧
1 +

Nw↵

n=1

wn

⇤
2�
m�h

⌅n
⌃

/ (42)

⌥

 1 +
Nam↵

i=1

Nw↵

j=0

cij

�am�h

2

⇥2i
⇤

2�
m�h

⌅j
�

⌦ ,

where, as for the moments,

i + j � max(Nam, Nw). (43)

Coe⇤cients cij and wn are determined by fitting function
w(m�h , a) to the values of 2am0h/(am�h) from Table II.
The fit also determines the parameters Zm(a), one for
each lattice spacing, which account for the running of
the bare quark masses between di⇥erent lattice spacings.

The finite-a dependence is smaller here than for the
moments, because the ⇥h is nonrelativistic [8], and the
variation with m�h stronger (twice that of z(µ/mh =
3, m�h)). So here we use priors

cij = 0± 0.05 (44)
wn = 0± 4

Zm(a) = 1± 0.5

with Nw =8. We again take Nam =30, although identical
results are obtained with Nam = 15.

Our fit results are illustrated by Figure 4 which plots
the ratio m0h/m�h divided by m0c/m�c for a range of
⇥h masses. Our data for di⇥erent lattice spacings is com-
pared with our fit, and with the a = 0 limit of our fit
(solid line). The fit is excellent, with ⇤2/22 = 0.42 for
the 22 pieces of data we fit (we again exclude cases with
am�h > 1.95). Using the ⇥c and ⇥b masses from Sec-
tion IVB, and Eq. (41) with the best-fit values for the
parameters, we obtain finally

m0b

m0c
⇥ 4.49(4) as a⇥0 (45)

=
mb(µ, nf )
mc(µ, nf )

,

which agrees well with our result from the moments
(Eq. (36)).

m�c 4 6 8 m�b

m�h (GeV)
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FIG. 4: Ratio m0h/m�h divided by m0c/m�c (which we ap-
proximate by w(m�c , a)/2 from our fit) as a function of m�h .
The solid line shows the a=0 extrapolation obtained from our
fit. This is compared with simulation results for our 4 small-
est lattice spacings, together with the best fits (dashed lines)
corresponding to those lattice spacings. The point marked by
an “x” is for the largest mass we tried (last line in Table II);
this was not included in the fit because am�h is too large.

VI. �MS FROM WILSON LOOPS

In a recent paper [26], we presented a very accurate
determination of the QCD coupling from simulation re-
sults for Wilson loops. Here we want to compare those
results to the value we obtain from heavy-quark corre-
lators. First, however, we must update our earlier anal-
ysis to take account of the new value for r1 [10] given
in Eq. (10) and improved values for r1/a [13] given in Ta-
ble I. (The Wilson-loop paper uses some additional con-
figuration sets: from Table II in that paper, sets 1, 6, 9,
and 11 whose new r1/as are 1.813(8), 2.644(3), 5.281(8)
and 5.283(8), respectively.) We have rerun our earlier
analysis, updating r1, r1/a, and the c and b masses. The
results are shown in Figure 5. Combining results as in the
earlier paper we obtain a final value from the Wilson-loop
quantities of

�MS(MZ , nf = 5) = 0.1184(6), (46)

with ⇤2/22 = 0.3 for the 22 quantities in the figure.
This agrees very well with the result in the earlier pa-
per, �MS(MZ) = 0.1183(8), but has a slightly smaller
error, as expected given the smaller error in r1. This
new value also agrees well with our very di⇥erent de-
termination from heavy-quark correlators (Eq. (38)). A
breakdown of the error into its di⇥erent sources can be
found in Table IV of [26] (reduce the r1 and r1/a errors
in that table by half to account for the improved values
used here).

mb/mc

mb/mc = 4.51(4)

*new* 2+1+1 with 
physical u.d:

mc/ms = 11.652(65)
mb/ms = 52.90(44)

6= 3m⌧/mµ



Aim for same ‘overview’ as for masses. Note different scale. 

HPQCD:
1302.2644

HPQCD:
1312.5264HPQCD:

1303.1670

Meson decay constants 
Parameterises hadronic information needed 
for annihilation rate to W or photon: � / f2
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Constraining new physics with lattice QCD 
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come from experiment, but there are two complications
that result from simplifications in the simulations. The
first is that the simulation does not include electromag-
netism. The second is that mu = md in the simulation,
while in reality mu = 0.48(10)md [1].

The most appropriate pion mass for f�+ is the
neutral-pion mass (134.9766(6) MeV [1]). All ⇥ mesons
would have this mass in a world without electromag-
netism—our simulations, for example—up to very small
(quadratic) corrections from the u�d mass di⇥erence.
These corrections are estimated at 0.32(20)MeV for M�+

in [27]. For our purposes, it is su⌅cient to take 0.32MeV
as the uncertainty in the pion mass, and ignore the dis-
tinction between charged and neutral pions:

Mphys
� = 134.98(32)MeV (15)

This pion mass corresponds in our simulation to a
light-quark mass of m⌅ = (mu + md)/2. The corre-
sponding kaon mass is one for an s⌥ meson. This is the
root-mean-square average of the K+ and K0 masses with
additional small corrections for electromagnetism:

(Mphys
K )2 ⇥ 1

2

�
(M2

K+ +M2
K0)

�(1 +�E)(M
2
�+ �M2

�0)
⇥
. (16)

�E would be zero if electromagnetic e⇥ects in the K sys-
tem mirrored those of the ⇥. In fact it is closer to 1.
Recent lattice calculations [28–30] that include electro-
magnetic e⇥ects give values in the region 0.6-0.7. We
take �E = 0.65(50) to conservatively encompass these
results and this gives

Mphys
K = 494.6(3)MeV. (17)

Tuning the pion mass to Mphys
� and the kaon mass to

Mphys
K in our fits sets the strange-quark mass to its phys-

ical value, and the light-quark mass to the average m⌅ of
the u and d masses. This light-quark mass is correct, to
within our errors, for the valence quarks in the pion, and
for sea quarks in all three mesons.

This tuning is not correct, however, for the
K+’s valence light-quark, which is a u quark, with
mass 0.65(9)m⌅. This di⇥erence produces a small but
significant downward shift in fK+ . To compute the cor-
rected K+ decay constant, we evaluate our fit formulas
with a pion mass given by

⇤
0.65(9)Mphys

� , while adjust-
ing the kaon mass so that 2M2

K � m2
� is unchanged (to

leave the s-quark mass unchanged). These adjustments
are made only for the valence-quark masses in the K+;
the valence-quark masses in the pion and �s, as speci-
fied by Mphys

� and Mphys
K , are left unchanged, as are the

sea-quark masses in each of the mesons.

D. Fit Results

We fit w0 times each of the decay constants and each
�s mass in Table III to the formulas above, as functions
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FIG. 2: Fit results for the ⇥, K, and �s decay constants
as functions of the light-quark mass for three di�erent lat-
tice spacings: 0.15 fm (top/blue), 0.12 fm (middle/green), and
0.09 fm (bottom/red). The data shown are from Table III,
with corrections for errors in the s masses, and for finite-
volume errors. The lines show our fit with the best-fit values
of the fit parameters. The dashed line is the a = 0 extrap-
olation, and the gray band shows our continuum results at
the physical light quark mass point with m⇤ = (mu +md)/2.
The current experimental result for f⇥+ is also shown (black
point). Note that the three plots are against very di�er-
ent scales in the vertical direction: the range covered in the
f⇥ plot is 10 times larger than that covered in the f�s plot.

of the pion and kaon masses and w0. We also fit the
experimental value for f�+ = 130.4(2)MeV to our for-
mula evaluated at the physical pion and kaon masses,
Eqs. (15, 17)). These fits are all done simultaneously
using the same parameters for the fit functions in each
case, and including the correlations between ⇥, K and �s
results discussed in Section II.
The results for the decay constants, as a function of the

light-quark mass, are shown in Figure 2. For each decay

Vus/Vud

`

Annihilation of             to W 
allows CKM element 
determination given decay 
constants from lattice QCD

K/�

* results at physical u/d quark masses* 
                   HISQ 2+1+1 configs fK/f�

�(K+ ! ⇤�)

�(⇥+ ! ⇤�)

|Vus|fK+

|Vud|f�+

= 0.27598(35)Br(K+)(25)EM

expt for

fK+

f�+
from lattice gives CKMR.Dowdall et 

al, HPQCD:
1303.1670

= mu,d/ms



fK+
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= 1.1916(21)

|V
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|
|V

ud

| = 0.23160(29)
expt

(21)
EM

(41)
latt

Vud from nuclear       decay now needs improvement for unitarity test!�

Comparison of results (note:                     by 0.3%) fK+ < fK

* results at physical u/d 
quark masses*

(28)Br(20)EM (40)latt(5)Vud

|Vus| = 0.22564

1� |Vud|2 � |Vus|2 � |Vub|2

= �0.00009(51)

clover
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asqtad

good agreement from different formalisms
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B meson decay constants: results from NRQCD b and 
physical u/d quarks HPQCD: R Dowdall et al,

1302.2644. 

3

B and Bs are fit separately; priors used in the fit are
described in [11]. The amplitudes and energies from the

fits are given in Tables IV and V. a3/2⇥(0)
q is the matrix

element of the leading current J (0)
0 and a3/2⇥(1)

q that of

J (1)
0 and J (2)

0 , whose matrix elements are equal at zero
meson momentum. Notice that the statistical errors in
⇥ do not increase on the physical point lattices, because
they have such large volumes.

We take two approaches to the analysis. The first is
to perform a simultaneous chiral fit to all our results for
⇥,⇥s,⇥s/⇥ and MBs � MB using SU(2) chiral pertur-
bation theory. The second is to study only the physical
u/d mass results as a function of lattice spacing.

For the chiral analysis we use the same formula and
priors for MBs � MB as in [11]. Pion masses used in
the fits are listed in Table V and the chiral logarithms,
l(M2

�), include the finite volume corrections computed
in [18] which have negligible e⇤ect on the fit. For the
decay constants the chiral formulas, including analytic
terms up to M2

� and the leading logarithmic behaviour,
are (see e.g. [19]):

⇥s = ⇥s0(1.0 + bsM
2
�/�

2
⇥) (5)

⇥ = ⇥0

�
1.0 + bl

M2
�

�2
⇥

+
1 + 3g2

2�2
⇥

�
�3

2
l(M2

�)

⇥⇥
(6)

The coe⇧cients of the analytic terms bs, bl are given
priors 0.0(1.0) and ⇥0,⇥s0 have 0.5(5). To allow for
discretisation errors each fit formula is multiplied by
(1.0 + d1(�a)2 + d2(�a)4), with � = 0.4 GeV. We ex-
pect discretisation e⇤ects to be very similar for ⇥ and ⇥s

and so we take the di to be the same, but di⇤ering from
the di used in the MBs �MB fit. Since all actions used
here are accurate through a2 at tree-level, the prior on
d1 is taken to be 0.0(3) whereas d2 is 0.0(1.0). The di are
allowed to have mild mb dependence as in [11]. The ratio
⇥s/⇥ is allowed additional light quark mass dependent
discretisation errors that could arise, for example, from
staggered taste-splittings.

Error % �Bs/�B MBs �MB �Bs �B

EM: 0.0 1.2 0.0 0.0
a dependence: 0.01 0.9 0.7 0.7
chiral: 0.01 0.2 0.05 0.05
g: 0.01 0.1 0.0 0.0
stat/scale: 0.30 1.2 1.1 1.1
operator: 0.0 0.0 1.4 1.4
relativistic: 0.5 0.5 1.0 1.0
total: 0.6 2.0 2.0 2.1

TABLE VI: Full error budget from the chiral fit as a per-
centage of the final answer.

The results of the decay constant chiral fits are plot-
ted in Figs. 1 and 2. Extrapolating to the physical
point appropriate to ml = (mu + md)/2 in the absence
of electromagnetism, i.e. M� = M�0 , we find ⇥Bs =
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FIG. 1: Fit to the decay constant ratio �Bs/�B . The fit
result is shown in grey and errors include statistics, and chi-
ral/continuum fitting.

0.00 0.05 0.10 0.15 0.20 0.25
M2

⇥/M2
�s

0.35

0.40

0.45

0.50

0.55

f B
q�

M
B q

(G
eV

)3
/2

fB
�
MB

fBs
�
MBs

Physical point

Set 1
Set 2
Set 3
Set 4

Set 5
Set 6
Set 7
Set 8

FIG. 2: Fit to the decay constants �Bs and �B . Errors on the
data points include statistics/scale only. The fit error, in grey,
includes chiral/continuum fitting and perturbative errors.

0.520(11) GeV3/2, ⇥B = 0.428(9) GeV3/2, ⇥Bs/⇥B =
1.215(7). For MBs �MB we obtain 86(1) MeV, in agree-
ment with the result of [11].
Figs 3 and 4 show the results of fitting MBs � MB

and decay constants from the physical point ensembles
only, and allowing only the mass dependent discretisation
terms above. The results are ⇥Bs = 0.515(8) GeV3/2,
⇥B = 0.424(7) GeV3/2, ⇥Bs/⇥B = 1.216(7) and MBs �
MB = 87(1) MeV. Results and errors agree well between
the two methods and we take the central values from the
chiral fit as this allows us to interpolate to the correct
pion mass.
Our error budget is given in Table VI. The errors that

are estimated directly from the chiral/continuum fit are
those from statistics, the lattice spacing and g and other
chiral fit parameters. The two remaining sources of error
in the decay constant are missing higher order corrections
in the operator matching and relativistic corrections to
the current. We estimate the operator matching error by
allowing in our fits for an amb-dependent �2

s correction to
the renormalisation in Eq. 4 with prior on the coe⇧cient
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FIG. 3: Fit to the mass di⇥erence MBs � MB on the three
physical point ensembles only. Errors on data points include
statistics and scale, the fit error is shown in grey. An elec-
tromagnetic correction of -1(1) MeV has been applied to the
lattice results and the fit to allow comparison with experi-
ment.
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FIG. 4: Fit to the decay constants �Bs and �B on the
three physical point ensembles only. Errors on the data
points include statistics/scale only. The fit error includes chi-
ral/continuum fitting and perturbative errors.

of 0.0(2) i.e. ten times the size of the one-loop correction,
z0. This error cancels in the ratio fBs/fB . We also al-

low for �2
s corrections multiplying J (1,2)

0 with coe⌃cient

0.0(1.0). The matrix element of J (1)
0 is about 10% of J (0)

0
from Table IV. Missing current corrections at the next or-
der in 1/mb will be of size (�QCD/mb)

2 ⇧ 0.01 which we
take as an error. Finally, we estimated in [11] that to
correct for missing electromagnetic e⇤ects, MBs � MB

should be shifted by -1(1) MeV.
Using the PDG masses MBl = (MB0 + MB±)/2 =

5.27942(12) GeV and MBs = 5.36668(24) GeV [20] to
convert ⇥q to fBq our final results are:

fB = 0.186(4) GeV (7)

fBs = 0.224(5) GeV

fBs/fB = 1.205(7)

MBs �MB = 85(2) MeV.

For the B meson decay constant we need to distinguish
between fBd and fBu . Since sea quark mass e⇤ects are
much smaller than valence mass e⇤ects we simply do
this by extrapolating ⇥Bs and ⇥B to values of M2

� cor-
responding to fictitious mesons made purely of u or d
quarks using mu/md = 0.48(10) [20]. This gives:

fBs/fB+ = 1.217(8) ; fBs/fB0 = 1.194(7)

fB+ = 0.184(4) GeV ; fB0 = 0.188(4) GeV (8)

IV. CONCLUSIONS

Our results agree with but improve substantially on
two earlier results using nonrelativistic approaches for the
b quark and multiple lattice spacing values on Nf = 2+1
ensembles using asqtad sea quarks. These were: fBs =
228(10) MeV, fBs/fB = 1.188(18) (NRQCD/HISQ) [14]
and fBs = 242.0(9.5) MeV and fBs/fB+ = 1.229(26)
(Fermilab/asqtad) [21]. We also agree well (within the
2% errors) with a previous result for fBs of 225(4) MeV
obtained using a relativistic (HISQ) approach to b quarks
on very fine Nf = 2 + 1 lattices [22]. Our simultaneous
determination of MBs � MB to 2% agrees with experi-
ment (87.4(3) MeV [20]).
We can determine new lattice ‘world-average’ error-

weighted values by combining our results in Eq. 7 with
the independent results of [21] and [22] since e⇤ects from
c sea quarks, which they do not include, should be neg-
ligible [23]. The world averages are then: fBs = 225(3)
MeV and fBs/fB+ = 1.218(8) giving fB+ = 185(3) MeV.
These allow for significant improvements in predictions

for SM rates. For example, updating [24] with the world-
average for fBs above and our result for fB0 (Eq. 8) we
obtain:

Br(Bs ⌅ µ+µ�) = 3.17± 0.15± 0.09⇥ 10�9

Br(Bd ⌅ µ+µ�) = 1.05± 0.05± 0.05⇥ 10�10 (9)

where the second error from fBq has been halved and is
no longer larger than other sources of error such as V ⇥

tbVtq.
Note that this is the flavor-averaged branching fraction
at t = 0; the time-integrated result would be increased
by 10% in the Bs case (to 3.47(19) ⇥ 10�9) to allow for
the width di⇤erence of the two eigenstates [25, 26]. The
current experimental results [27] for Bs ⌅ µ+µ� agree
with this prediction.
From the world-average fB+ above we also obtain the

Standard Model rate:

1

|Vub|2
Br(B+ ⌅ ⌅⇤) = 6.05(20), (10)

with 3% accuracy. Calculations of matrix elements for
Bs/B mixing with physical u/d quarks are now under-
way.
Acknowledgements We are grateful to the MILC col-
laboration for the use of their gauge configurations and
to B. Chakraborty, J. Koponen and P. Lepage for useful
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! Super rare decay in SM with well! Super rare decay in SM with well

predicted BR(Bs " µµ) = (3.55±0.33)×10-9

! Sensitive to NP in MSSM

BR ∝ tan6β / M4
A
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Figure 2: Decay time distribution for the sum of the five decay modes for candidates tagged as
mixed (di↵erent flavour at decay and production; red, continuous line) or unmixed (same flavour
at decay and production; blue, dotted line). The data and the fit projections are plotted in a
signal window around the reconstructed B0

s

mass of 5.32 – 5.55 GeV/c2.

The information provided by the opposite-side and same-side taggers for the signal is
combined to a single tagging decision q and a single mistag probability !(⌘OST, ⌘SST) using
their respective calibration parameters p0OST/SST

and p1OST/SST
. The individual background

components show di↵erent tagging characteristics for candidates tagged by the OST or
SST. The b hadron backgrounds show the same opposite-side tagging behaviour (q and
!) as the signal, while the combinatorial background shows random tagging behaviour.
For same-side tagged events, we assume random tagging behaviour for all background
components. We introduce tagging asymmetry parameters to allow for di↵erent numbers
of candidates being tagged as mixed or unmixed, and other parameters to describe the
tagging e�ciencies for these backgrounds. As expected, the fitted values of these asymmetry
parameters are consistent with zero within uncertainties.

All tagging parameters, as well as the value for �m
s

, are constrained to be the same
for the five decay modes. The result is �m

s

= 17.768 ± 0.023 ps�1 (statistical uncertainty
only). The likelihood profile was examined and found to have a Gaussian shape up to
nine standard deviations. The decay time distributions for candidates tagged as mixed
or unmixed are shown in Fig. 2, together with the decay time projections of the PDF
distributions resulting from the fit.
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Figure 1: The box diagram and its reduction to a 4-quark operator whose matrix element can be calculated
in lattice QCD.

1. Introduction

The Standard Model rates for Bd and Bs oscillations are determined by hadronic parameters
obtained from the matrix element between B and B states of 4-quark effective operators derived
from the box diagram (see Figure 1). The 4-quark operator matrix elements can only be determined
by lattice QCD calculations. The accuracy with which this can be done is the limiting factor in the
constraint on the Cabibbo-Kobayashi-Maskawa matrix elements that can be obtained from the very
precise experimental results.

We study the matrix elements of 3 Standard Model 4-quark operators:

O1 ⌘ (ba

g

µ

Lqa)(bb

g

µ

Lqb )

O2 ⌘ (baLqa)(bb Lqb )

O3 ⌘ (baLqb )(bb Lqa). (1.1)

Here the superscripts are colour indices and L is the ‘left’ projection operator. O1 is the key operator
for Bs and Bd oscillations, O2 is needed for the renormalisation of O1 and all 3 appear in the
calculation of the B width difference. It is conventional to express the matrix element of O1 as:

hO1(µ)i =
8
3

f 2
BBB(µ)M2

B (1.2)

where BB is the ‘bag parameter’, fB the decay constant and the factor of 8/3 ensures that BB is 1 in
the ‘vacuum saturation approximation’. This is a convenient parameterisation to use since, as we
shall see, the bag parameter has very simple behaviour with almost no dependence on light quark
mass, although the value is not necessarily 1. The factor of 8/3 becomes -5/3 for O2 and 1/3 for O3.

The determination of the matrix elements in lattice QCD is standard [1, 2]. Here we use
NRQCD for the b-quark, superseding previous calculations by the use of our radiatively improved
NRQCD action [3, 4]. We work on ‘second-generation’ MILC gluon field configurations [5] that
use an improved gluon action [6] and include the effect of u, d, s and c HISQ [7] sea quarks. The
parameters of the gluon configurations are given in Table 1. We determined fBs = 224(5) MeV and
fB = 186(4) MeV on these configurations in [8] and in the same calculation obtained MBs � MB

= 85(2) MeV and MBs = 5.366(8) GeV [9], in good agreement with experiment. This shows the
accuracy now achievable with second-generation lattice QCD analysis.

To calculate the 4-quark operator matrix elements we set up a ‘3-point’ calculation as in Fig-
ure 2. The NRQCD b and light-quark propagators start from local sources at On. We then arrange
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Hadronic corrections to the muon g�2 from lattice QCD T. Blum

Table 1: Standard Model contributions to the muon anomaly. The QED contribution is through a5, EW
a2, and QCD a3. The two QED values correspond to different values of a , and QCD to lowest order (LO)
contributions from the hadronic vacuum polarization (HVP) using e+e� ! hadrons and t ! hadrons, higher
order (HO) from HVP and an additional photon, and hadronic light-by-light (HLbL) scattering.

QED 11658471.8845(9)(19)(7)(30)⇥10�10 [2]
11658471.8951(9)(19)(7)(77)⇥10�10 [2]

EW 15.4(2)⇥10�10 [5]
QCD LO (e+e�) 692.3(4.2)⇥10�10, 694.91(3.72)(2.10)⇥10�10 [3, 4]

LO (t) 701.5(4.7)⇥10�10 [3]
HO HVP �9.79(9)⇥10�10 [6]
HLbL 10.5(2.6)⇥10�10 [9]

The HVP contribution to the muon anomaly has been computed using the experimentally
measured cross-section for the reaction e+e� ! hadrons and a dispersion relation to relate the real
and imaginary parts of P(Q2). The current quoted precision on such calculations is a bit more than
one-half of one percent [3, 4]. The HVP contributions can also be calculated from first principles
in lattice QCD [8]. While the current precision is significantly higher for the dispersive method,
lattice calculations are poised to reduce errors significantly in next one or two years. These will
provide important checks of the dispersive method before the new Fermilab experiment. Unlike
the case for aµ(HVP), aµ(HLbL) can not be computed from experimental data and a dispersion
relation (there are many off-shell form factors that enter which can not be measured). While model
calculations exist (see [9] for a summary), they are not systematically improvable. A determination
using lattice QCD where all errors are controlled is therefore desirable.

In Sec. 2 we review the status of lattice calculations of aµ(HVP). Section 3 is a presentation
of our results for aµ(HLbL) computed in the framework of lattice QCD+QED. Section 4 gives our
conclusions and outlook for future calculations.

Z

W

Z
...

Figure 1: Representative diagrams, up to order a3, in the Standard Model that contribute to the muon
anomaly. The rows, from to top to bottom, correspond to QED, EW, and QCD. Horizontal solid lines
represent the muon, wiggly lines denote photons unless otherwise labeled, other solid lines are leptons,
filled loops denote quarks (hadrons), and the dashed line represents the higgs boson.
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relation (there are many off-shell form factors that enter which can not be measured). While model
calculations exist (see [9] for a summary), they are not systematically improvable. A determination
using lattice QCD where all errors are controlled is therefore desirable.

In Sec. 2 we review the status of lattice calculations of aµ(HVP). Section 3 is a presentation
of our results for aµ(HLbL) computed in the framework of lattice QCD+QED. Section 4 gives our
conclusions and outlook for future calculations.

Z

W

Z
...

Figure 1: Representative diagrams, up to order a3, in the Standard Model that contribute to the muon
anomaly. The rows, from to top to bottom, correspond to QED, EW, and QCD. Horizontal solid lines
represent the muon, wiggly lines denote photons unless otherwise labeled, other solid lines are leptons,
filled loops denote quarks (hadrons), and the dashed line represents the higgs boson.

3

QED

EW

QCD

sensitive to new physics …
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~µµ = gµ
e

2m
~Sµ

Re+e�

Error in SM calc. dominated by that from hadronic 
vacuum polarisation - improve in lattice QCD?

Current status of muon g-2

BNL E821 (2001) : aexp
µ = 116592089(63) 10�11 ± 0.54 ppm

Overview of measurement technique : Experimental goal
At the muon ’magic’ momentum 3.094 GeV/c:
~!a = ~!s � ~!c = �

⇣
g�2

2

⌘
q~B
m = �aµ

q~B
m

where !c and !s are cyclotron and spin precession frequencies for a muon
moving in the magnetic storage ring.
Weak decay so
positron direction
follows muon spin.
Highest energy
positrons occur when
muon spin and
momentum are aligned.

!

g-2 discrepancy of 3.6� between the standard model and the experiment:
aexp
µ � aSM

µ = 25(9)x10�10.
Discovery of new physics (if 5�): Supersymmetric particles, dark photon,
multi-Higgs model, extra dimentions ???
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Hadronic vacuum polarisation contribution to anomalous 
magnetic moment of muon
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Can we improve ahead of E989 run?

aµ



Determine the q2 derivative moments of        
at q2=0 from time moments of vector correlator and  
use Pade Approximants to evaluate the integral

⇧̂
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FIG. 4: Lattice QCD results for the connected contribution to
the muon anomaly aµ from vacuum polarization of s quarks.
Results are for three lattice spacings, and two light-quark
masses: m

lat
` = ms/5 (lower, blue points), and m

lat
` = m

phys
`

(upper, red points). The dashed lines are the corresponding
values from the fit function, with the best-fit parameter val-
ues: ca2 = 0.29(13), csea = �0.020(6) and cval = �0.61(4).
The gray band shows our final result, 53.41(59)⇥10�10, with
m

lat
` = m

phys
` , after extrapolation to a = 0.

TABLE III: Error budgets for connected contributions to the
muon anomaly aµ from vacuum polarization of s and c quarks.

a

s
µ a

c
µ

Uncertainty in lattice spacing (w0, r1): 1.0% 0.6%
Uncertainty in ZV : 0.4% 2.5%

Monte Carlo statistics: 0.1% 0.1%
a

2 ! 0 extrapolation: 0.1% 0.4%
QED corrections: 0.1% 0.3%

Quark mass tuning: 0.0% 0.4%
Finite lattice volume: < 0.1% 0.0%
Padé approximants: < 0.1% 0.0%

Total: 1.1% 2.7%

mistuning of the sea and valence light-quark bare masses:

�xsea ⌘
X

q=u,d,s

m

sea
q

� m

phys
q

m

phys
s

(9)

�x

s

⌘ m

val
s

� m

phys
s

m

phys
s

. (10)

For our lattices with physical u/d sea masses �xsea is very
small. a

2 errors from staggered ‘taste-changing’ e↵ects
will remain and they are handled by c

a

2 . The four fit
parameters are a2

µ

, c
a

2 , csea and cval; we use the following
(broad) Gaussian priors for each:

a

s

µ

= 0 ± 100 ⇥ 10�10

c

a

2 = 0(1) csea = 0(1) cval = 0(1). (11)

Our final result for the connected contribution for

TABLE IV: Contributions to aµ from s and c quark vacuum
polarization. Only connected parts of the vacuum polariza-
tion are included. Results, multiplied by 1010, are shown for
each of the Padé approximants.

Quark [1, 0]⇥ 1010 [1, 1]⇥ 1010 [2, 1]⇥ 1010 [2, 2]⇥ 1010

s 57.63(67) 53.28(58) 53.46(59) 53.41(59)
c 14.58(39) 14.41(39) 14.42(39) 14.42(39)

s quarks to g � 2 is:

a

s

µ

= 53.41(59) ⇥ 10�10
. (12)

The fit to [2, 2] Padé results from all 10 of our configu-
ration sets is excellent, with a �

2 per degree of freedom
of 0.22 (p-value of 0.99). In Fig. 4 we compare our fit
with the data from configurations with m

s

/m

`

equal 5
and with the physical mass ratio.
The error budget for our result is given in Table III.

The dominant error, by far, comes from the uncertainty
in the physical value of the Wilson flow parameter w0,
which we use to set the lattice spacings. We estimate the
uncertainty from QED corrections to the vacuum polar-
ization to be of order 0.1% from perturbation theory [20],
suppressed by the small charge of the s quark. Our re-
sults show negligible dependence (< 0.1%) on the spatial
size of the lattice, which we varied by a factor of two. Also
the convergence of successive orders of Padé approximant
indicates convergence to better than 0.1%; results from
fits to di↵erent approximants are tabulated in Table IV.
Note that the a2 errors are quite small in our analysis.

This is because we use the highly corrected HISQ dis-
cretization of the quark action. Our final (a = 0) result
is only 0.6% below our results from the 0.09 fm lattices
(sets 9 and 10). The variation from our coarsest lattice to
a = 0 is only 1.8%. We compared this with results from
the clover discretization for quarks, which had finite-a
errors in excess of 20% on the coarsest lattices.
Finally we also include results for c quarks in Tables III

and IV. These are calculated from the moments (and er-
ror budget) published in [20]. Our final result for the con-
nected contribution to the muon anomaly from c-quark
vacuum polarization is:

a

c

µ

= 14.42(39) ⇥ 10�10
. (13)

The dominant source of error here is in the determination
of the Z

V

renormalization factors. This error could be
substantially reduced by using the method we used for
the s-quark contribution [26].

III. DISCUSSION/CONCLUSIONS

The ultimate aim of lattice QCD calculations of
a

µ,HVP is to improve on results from using, for exam-
ple, �(e+e� ! hadrons) that are able to achieve an un-
certainty of below 1%. We are not at that stage yet.

s contrib. calculated 
on 2+1+1 with 
physical u/d quarks

asµ = 53.41(59)⇥ 10�10

acµ = 14.42(39)⇥ 10�10

1% accurate 

2+1 results from earlier  - 
agree well with Re+e�

still to do: 
“disconnected” 
pieces - expect very 
small

Hadronic corrections to the muon g�2 from lattice QCD T. Blum

2. Hadronic Vacuum Polarization

It has long been known that aµ(HVP) can be computed from e+e� ! hadrons [10, 11]. Later it
was realized that t ! hadrons could also be used to improve the result in a limited, but important,
range of Q2 [12]. For example, the most recent studies find [4] aµ(HVP) = (694.91± 3.72±
2.10)⇥10�10 (e+e�) while [3] quotes aµ(HVP) = (692±4.2)⇥10�10 (e+e�) and (701.5±4.7)⇥
10�10 (including t). These determinations are the targets for lattice calculations. Note the result
including t data is about 2 standard deviations larger than the pure e+e� contribution, and reduces
the discrepancy with the Standard Model to 2.4 standard deviations [3]. The former requires isospin
corrections which may not be under control. Alternatively, r�g mixing may explain the difference
and bring the t-based result in line with that of e+e� [13]. The lattice QCD calculations, as we
discuss below, are not yet at the level of precision to help resolve this issue.

In [8] it was shown that aµ(HVP) can be calculated instead using lattice QCD,

aµ(HVP) =
⇣a

p

⌘2 Z •

0
dQ2 f (Q2)P̂(Q2). (2.1)

(a similar formula was found much earlier in the context of large N QCD [14]). Here Q2 is the
Euclidean momentum-squared in the one-loop QED integral (Fig. 2) that runs through the renor-
malized (once-subtracted) vacuum polarization, P̂(Q2), and f (Q2) is a known analytic function
that diverges in the limit Q2 ! 0. Hence the integrand is dominated by the low momentum region
around m2

µ . The HVP is non-perturbative in this region, so the lattice provides a natural framework
for the calculation of aµ(HVP). The importance of the low momentum region (and light quark
masses) implies large volumes are necessary. Since lattice results are determined at discrete values
of Q2, a smooth interpolation is necessary in order to utilize Eq. (2.1). P̂(Q2) is also cut-off at
|Q|⇠ 1/a, so the high-momentum region can be handled with continuum perturbation theory [15],
though this contribution is small [8], on the order of a percent for present lattice calculations.

Figure 2: The lowest order hadronic contribu-
tion to the muon anomaly. The blob represents
all possible intermediate hadronic states.

Figure 3: Lowest order hadronic contribution to
the muon anomaly from two quark loops con-
nected by gluons. The contribution is flavor-
symmetry and Zweig suppressed.

First we briefly review the published lattice results for aµ(HVP) which are summarized in
Tab. 2 (and have not changed since last year’s meeting [16]). We then update them from this year’s
meeting and discuss new developments. We discuss only results using dynamical fermions as it is
known that the quenched results significantly underestimate the dispersive ones [8, 17]. The quoted
errors on all of the results are still somewhat crude, and nowhere complete. The first dynamical
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At large times vector correlator gives information about 
the        meson - agrees well with expt for physical u/d�
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Figure 3: The plot on the left represents the results for mf � mhs calculated using the HISQ formalism
on ml = ms/5 and physical point ensembles with varied lattice spacings and extrapolated to a = 0. The
continuum results are compared to the experiment. The plot on the right shows the similar results for ff ,
compared to the experimental result derived from G(f ! e+e�).

the spatial momentum to zero. We use the random colour wall source created from a set of U(1)
random numbers over a timeslice for improved statistics. The local current is not the conserved
vector current for the HISQ quark action and must be renormalised. We have found the local vector
current renormalisation constant (ZV,ss) completely non-perturbatively with 0.1% uncertainty on the
finest ml = ms/5 lattices[15].

4. Our results

4.1 Properties of f meson

We are concerned with the properties of the correlation function at the shorter times that feed
into the theoretical determination of aµ,HVP. But at large time separations between source and sink
the correlators give the mass (mf ) and decay constant ( ff ) of the f meson [15]. The plots in figure 3
show how precisely we can extract those properties of the f meson, and therefore, how accurate
our correlators are. Our results for mf � mhs and ff in the continuum limit on the physical point
lattices agree with experimental results. ff is related to G(f ! e+e�).

4.2 Connected contributions to as
µ from full LQCD

We fit the results of as
µ using [2,2] Padé approximants from each configuration set to a function

of the form

as
µ,lat = as

µ ⇥
�
1+ ca2(aLQCD/p)2 + cseadxsea + cvaldxval

�
,

where LQCD = 0.5 GeV and dxsea ⌘ Âq=u,d,s
msea

q �mphys
q

mphys
s

, dxs ⌘ mval
s �mphys

s

mphys
s

.

Discretisation effects are handled by ca2 , though negligibly small. The fit from all 10 of our
configuration sets is excellent, with a c2 per degree of freedom of 0.22 (p-value of 0.99).
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the spatial momentum to zero. We use the random colour wall source created from a set of U(1)
random numbers over a timeslice for improved statistics. The local current is not the conserved
vector current for the HISQ quark action and must be renormalised. We have found the local vector
current renormalisation constant (ZV,ss) completely non-perturbatively with 0.1% uncertainty on the
finest ml = ms/5 lattices[15].

4. Our results

4.1 Properties of f meson

We are concerned with the properties of the correlation function at the shorter times that feed
into the theoretical determination of aµ,HVP. But at large time separations between source and sink
the correlators give the mass (mf ) and decay constant ( ff ) of the f meson [15]. The plots in figure 3
show how precisely we can extract those properties of the f meson, and therefore, how accurate
our correlators are. Our results for mf � mhs and ff in the continuum limit on the physical point
lattices agree with experimental results. ff is related to G(f ! e+e�).

4.2 Connected contributions to as
µ from full LQCD

We fit the results of as
µ using [2,2] Padé approximants from each configuration set to a function

of the form

as
µ,lat = as

µ ⇥
�
1+ ca2(aLQCD/p)2 + cseadxsea + cvaldxval

�
,

where LQCD = 0.5 GeV and dxsea ⌘ Âq=u,d,s
msea

q �mphys
q

mphys
s

, dxs ⌘ mval
s �mphys

s

mphys
s

.

Discretisation effects are handled by ca2 , though negligibly small. The fit from all 10 of our
configuration sets is excellent, with a c2 per degree of freedom of 0.22 (p-value of 0.99).
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u/d calculation underway. Much noisier - currently 
getting

Plan : 10x statistics in collaborn with MILC - should 
reduce errors below 1% by end 2015

aHV P,LO
µ = 662(35)⇥ 10�10

Expect to reduce error to 2-3% in current run. 



Pion electromagnetic form factor from full lattice QCD Jonna Koponen
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Figure 4: Vector mean square radius. The experimental result is from [3], and the HPQCD result is from
this work. Other lattice results are from [7, 1, 8, 9, 10] (from left to right). n f is the number of flavors and
mmin

� is the smallest pion mass used in that calculation. The results shown here are each group’s final result
after continuum and chiral extrapolation.

Figure 5: Non-relativistic charge density calculated using the pole form and �r2
v⇥ from our fit. We omit z

direction here for clarity and plot the charge density against x and y.
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Figure 3: Shape of the pion electromagnetic form factor. Experimental results by NA7 Collaboration are
from [3], lattice results by HPQCD from this work. The lines with error bands are from fits to experimental
data (grey colour, fit from [3]) and to our lattice results (red colour, this work).

real world is then the a = 0, physical m� part of the fit function, also shown in Fig. 3 with the error
bands. The chiral log gives only a very small correction, as the pion masses are very close to the
physical value. The slope at q2 = 0 gives the mean square value of the charge radius:

⇥r2
v⇤= 6

d f+(q2)

dq2 |q2=0. (6.3)

Our preliminary result is ⇥r2
v⇤= 0.40(3) fm2. Comparison to other lattice calculations and experi-

ment in Fig. 4 shows good agreement.
The form factor f+(q2) can be viewed as a Fourier transform of the electric charge distribution.

Hence the charge density can be calculated from the vector form factor once its functional form is
known. In the non-relativistic limit the charge density is

⇥(R) = 3
2�R⇥r2

v⇤
exp

�
� R⇤

⇥r2
v⇤/6

⇥
(6.4)

Using our result ⇥r2
v⇤= 0.40 fm2 gives the charge density plotted in Fig. 5.

7. Summary

We have presented here preliminary results from a full Lattice QCD calculation of the pion
vector electromagnetic form factor at physical pion mass. The use of twisted boundary conditions
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Pion electromagnetic form factor J. Koponen et 
al, HPQCD, 
1311.3512 

Working at 
physical u/d quark 
masses on HISQ 
2+1+1 
configurations. 
Agrees with 
experiment 
directly.

� � e             scattering probes        electric charge 
distribution 

⇡

 gives      charge 
distn

⇡

Scalar form factor in progress ….



Future
• Now working on ‘2nd generation’ gluon configs with 
charm in the sea and            at physical value.Will take       
down below 0.05fm (so b quarks are ‘light’)  
and increase statistics by a factor of 10 on coarser lattices.

mu,d a

• Aim for 1% errors for B and Bs physics 

Conclusion
• Lattice QCD results for gold-plated hadron masses and 
decay constants now providing stringent tests of QCD/SM, 
QCD parameters to 1% and input to BSM constraints. 

• Improve noisier calculations such as muon g-2, calcs. 
inc ‘disconnected diagrams’, exotic hadrons etc. 

www.physics.gla.ac.uk/HPQCD

• We need DiRAC III  in 2015-16 to do this …

http://www.dirac.ac.uk
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B and Bs are fit separately; priors used in the fit are
described in [11]. The amplitudes and energies from the

fits are given in Tables IV and V. a3/2⇥(0)
q is the matrix

element of the leading current J (0)
0 and a3/2⇥(1)

q that of

J (1)
0 and J (2)

0 , whose matrix elements are equal at zero
meson momentum. Notice that the statistical errors in
⇥ do not increase on the physical point lattices, because
they have such large volumes.

We take two approaches to the analysis. The first is
to perform a simultaneous chiral fit to all our results for
⇥,⇥s,⇥s/⇥ and MBs � MB using SU(2) chiral pertur-
bation theory. The second is to study only the physical
u/d mass results as a function of lattice spacing.

For the chiral analysis we use the same formula and
priors for MBs � MB as in [11]. Pion masses used in
the fits are listed in Table V and the chiral logarithms,
l(M2

�), include the finite volume corrections computed
in [18] which have negligible e⇤ect on the fit. For the
decay constants the chiral formulas, including analytic
terms up to M2

� and the leading logarithmic behaviour,
are (see e.g. [19]):

⇥s = ⇥s0(1.0 + bsM
2
�/�

2
⇥) (5)

⇥ = ⇥0

�
1.0 + bl

M2
�

�2
⇥

+
1 + 3g2

2�2
⇥

�
�3

2
l(M2

�)

⇥⇥
(6)

The coe⇧cients of the analytic terms bs, bl are given
priors 0.0(1.0) and ⇥0,⇥s0 have 0.5(5). To allow for
discretisation errors each fit formula is multiplied by
(1.0 + d1(�a)2 + d2(�a)4), with � = 0.4 GeV. We ex-
pect discretisation e⇤ects to be very similar for ⇥ and ⇥s

and so we take the di to be the same, but di⇤ering from
the di used in the MBs �MB fit. Since all actions used
here are accurate through a2 at tree-level, the prior on
d1 is taken to be 0.0(3) whereas d2 is 0.0(1.0). The di are
allowed to have mild mb dependence as in [11]. The ratio
⇥s/⇥ is allowed additional light quark mass dependent
discretisation errors that could arise, for example, from
staggered taste-splittings.

Error % �Bs/�B MBs �MB �Bs �B

EM: 0.0 1.2 0.0 0.0
a dependence: 0.01 0.9 0.7 0.7
chiral: 0.01 0.2 0.05 0.05
g: 0.01 0.1 0.0 0.0
stat/scale: 0.30 1.2 1.1 1.1
operator: 0.0 0.0 1.4 1.4
relativistic: 0.5 0.5 1.0 1.0
total: 0.6 2.0 2.0 2.1

TABLE VI: Full error budget from the chiral fit as a per-
centage of the final answer.

The results of the decay constant chiral fits are plot-
ted in Figs. 1 and 2. Extrapolating to the physical
point appropriate to ml = (mu + md)/2 in the absence
of electromagnetism, i.e. M� = M�0 , we find ⇥Bs =
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FIG. 1: Fit to the decay constant ratio �Bs/�B . The fit
result is shown in grey and errors include statistics, and chi-
ral/continuum fitting.
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FIG. 2: Fit to the decay constants �Bs and �B . Errors on the
data points include statistics/scale only. The fit error, in grey,
includes chiral/continuum fitting and perturbative errors.

0.520(11) GeV3/2, ⇥B = 0.428(9) GeV3/2, ⇥Bs/⇥B =
1.215(7). For MBs �MB we obtain 86(1) MeV, in agree-
ment with the result of [11].
Figs 3 and 4 show the results of fitting MBs � MB

and decay constants from the physical point ensembles
only, and allowing only the mass dependent discretisation
terms above. The results are ⇥Bs = 0.515(8) GeV3/2,
⇥B = 0.424(7) GeV3/2, ⇥Bs/⇥B = 1.216(7) and MBs �
MB = 87(1) MeV. Results and errors agree well between
the two methods and we take the central values from the
chiral fit as this allows us to interpolate to the correct
pion mass.
Our error budget is given in Table VI. The errors that

are estimated directly from the chiral/continuum fit are
those from statistics, the lattice spacing and g and other
chiral fit parameters. The two remaining sources of error
in the decay constant are missing higher order corrections
in the operator matching and relativistic corrections to
the current. We estimate the operator matching error by
allowing in our fits for an amb-dependent �2

s correction to
the renormalisation in Eq. 4 with prior on the coe⇧cient

Look at error budgets to see how things will improve in future ...

for different quantities different systematics are important 

1302.2644: calculation of B, Bs masses and decay constants

errors divided into extrapolation and other systematics:


