

Dark matter in the Solar System

Christopher M^cCabe

Together with Ciaran O'Hare, Wyn Evans, G. Myeong and V. Belokurov Based around arXiv:1807.09004 (PRD), 1810.11468 (PRD), 1909.04684

University of Birmingham - 13th November 2019

We have detected dark matter

Evidence from gravitational interactions...

... over many distance scales

Job done?

 X^0 mass: m = ?

- X^0 spin: J = ?
- X^0 parity: P = ?
- X^0 lifetime: $\tau = ?$
- X^0 scattering cross-section on nucleons: ?
- X^0 production cross-section in hadron colliders: ?
- X^0 self-annihilation cross-section: ?

Why should DM interact with the SM?

Suggests dark and visible & matter interactions are generic

Informs and limits the possible interactions

A wide landscape

Many candidates...

...all with SM interactions

Outline

- Why do we need to model the local dark matter?
- What is the 'standard approach'?
- Gaia!

Article Talk	Read Edit View history Search Wikipedia Q
Gaia Sausage	

Motivation Why model dark matter near Earth?

Searching for dark and visible interactions

Direct detection

Indirect detection

Collider

Generic direct detection experiment

Have to model the DM flux to extract the particle physics

The Standard approach

Standard Halo Model

Simplest spherical model with (asymptotically) flat rotation curve

$$f(\mathbf{v}) = \begin{cases} \frac{1}{N_{\text{esc}}} \left(\frac{3}{2\pi\sigma_v^2}\right)^{3/2} e^{-3\mathbf{v}^2/2\sigma_v^2} & : |\mathbf{v}| < v_{\text{esc}} \\ 0 & : \text{otherwise} \end{cases}$$

Assumptions:

- Round halo
- Gaussian (Maxwellian)
- Isotropic
- No substructure

Standard Halo Model

Simplest spherical model with (asymptotically) flat rotation curve

$$f(\mathbf{v}) = \begin{cases} \frac{1}{N_{\text{esc}}} \left(\frac{3}{2\pi\sigma_v^2}\right)^{3/2} e^{-3\mathbf{v}^2/2\sigma_v^2} & : |\mathbf{v}| < v_{\text{esc}} \\ 0 & : \text{otherwise} \end{cases}$$

Advantages:

- Simple
- Only 2 parameters
- Accurate(?)

SHM in nuclear recoil signals

SHM in axion searches

Is the Standard Halo Model correct?

Is the Standard Halo Model correct?

I. Compare with numerical simulations

Dark matter speed distribution from simulations

Green and magenta data points: *Milky Way-like* simulated halos Lines: Standard Halo Model - *Agreement is reasonably good!*

Speed distribution from simulations

Bozorgnia et al 1601.04707

Generalized Maxwellian distribution:

Spread of results for Milky Way-like halos:

Alpha is close to 1. Simulations consistent with Standard Halo Model

Is the Standard Halo Model correct?

- I. Compare with numerical simulations
- 2. Compare with data from the Milky Way

Gaia: a new era in mapping the Milky Way

Launched 2013 Operates until ~2022

7 millions stars with full 6D phase space (**x**,**v**)

20 kpc Post-Gaia horizon (1 km/s proper motions)

200 pc pre-Gaia horizon

Sun

Galactic centre

Ciaran O'Hare

Standard Halo Model assumes isotropic distribution

Anisotropic component: Gaia Sausage

Motions of 7,000,000 Gaia stars Major accretion event: nigh positive spin Galactic disc 'Sausage galaxy' and Milky Way r motion, J collided head on 8-10 billion years ago Stars move on highly circular -200 radial orbits high negative spin not isotropic! The Sausage Belokurov, Erkal, Evans, to the centre of the Galaxy from the centre of the Galaxy Koposov, Myeong... -200 200 arXiv:1802.03414, radial motion, km/s 1805.10288, 1805.00453

Denis Erkal: https://www.youtube.com/watch?v=8T2EdRZ_iE4

Ciaran O'Hare

Gaia Sausage or Gaia Enceladus?

Article Talk Bead Edit View history Search Wikipedia							
	Article	Talk	Read	Edit	View history	Search Wikipedia	Q

Gaia Sausage

From Wikipedia, the free encyclopedia

The **Gaia Sausage** is the remains of a dwarf galaxy, the "Sausage Galaxy" or **Gaia-Enceladus-Sausage** or just **Gaia-Enceladus**, that merged with the Milky Way about 8 - 11 billion years ago. At least eight globular clusters were added to the Milky Way along with 50 billion solar masses of stars, gas and dark matter.^[1] The "Gaia Sausage" is so-called because of the characteristic sausage shape of the population in velocity space, the appearance on a plot of radial versus azimuthal and vertical velocities of stars measured in the Gaia Mission.^[1] The stars that have merged with the Milky Way have orbits that are highly radial. The outermost points of their orbits are around 20 kiloparsecs from the galactic centre at what is called the halo break.^[2]

Including the Gaia Sausage

O'Hare, Evans, CM, arXiv:1810.11468, PRD

SHM++: 2 component model

O'Hare, Evans, CM, arXiv:1810.11468, PRD

	Local DM density	$ ho_0$	$0.3{ m GeVcm^{-3}}$
	Circular rotation speed	v_0	220 km s^{-1}
\mathbf{SHM}	Escape speed	$v_{\rm esc}$	544 km s^{-1}
	Velocity distribution	$f_{ m R}({f v})$	Eq. (1)
	Local DM density	$ ho_0$	$0.55 \pm 0.17 \text{ GeV cm}^{-3}$
${f SHM^{++}}$	Circular rotation speed	v_0	$233 \pm 3 \text{ km s}^{-1}$
	Escape speed	$v_{\rm esc}$	$528^{+24}_{-25} \text{ km s}^{-1}$
	Sausage anisotropy	eta	0.9 ± 0.05
	Sausage fraction	η	0.2 ± 0.1
	Velocity distribution	$f(\mathbf{v})$	Eq. (3)

 $\eta\,$ here is consistent with values in simulations $\beta\,$ takes same values as stars in Sausage sample

Necib et al 1810.12301 Fattahi et al 1810.07779

SHM++: 2 component model

SHM++: 2 component model

Modest changes for nuclear recoils

Dark matter mass

Modest changes for nuclear recoils

Detecting substructure: axions

$$a(\mathbf{x},t) \approx \frac{\sqrt{2\rho_a}}{m_a} \cos\left(\omega t - \mathbf{p} \cdot \mathbf{x} + \alpha\right)$$

Measuring the axion distribution

Sampling axion field over many, N, coherence times: \rightarrow Power spectrum ~ f(v)

Ciaran O'Hare

Modest changes for axion haloscopes

Gaia Sausage is clearly beyond the Standard Halo Model

...but generally leads to modest changes in experimental signals
Standard Halo Model

Simplest spherical model with (asymptotically) flat rotation curve

Assumptions:

- Round halo
- Gaussian (Maxwellian)
- Isotropic
- No substructure

Sausage component breaks assumptions

Is there also substructure?

Substructure: more extreme variations

We know there is substructure: streams

Famous example: Sagittarius stream

(doesn't pass through solar system)

Streams produced by the accretion of smaller galaxies

Are there streams passing through the solar system?

Finding structure in action space

SI is the most interesting for terrestrial experiments

SI stellar stream

SI: Identified with SDSS-Gaia (DRI) Catalogue94 member starsG. Myeong et al. 1712.04071

Passes very close to solar position (orange arrow)

S1 Stream

SI stream: very fast moving DM subcomponent

Sun

The dark matter wind

Dark matter hurricane?

O'Hare, CM et al. 1807.09004 A dark matter hurricane... June 3.5 × 10⁻³ VII. WIMP Wind SHM halo~220 km/s 100% **SHM** 3 Sun \mathbf{v} v_o~220km/s Lab frame f(v) $[\text{km}^{-1}]$ 2.5 90% SHM+10% S1 Cygnus WIMP Hurrican 2 VII 1.5 ecember SI stream~550 1 0.5 300 100 200 400 500 600 0 $v \, [\rm km \, s^{-1}]$

700

800

11/14/18 12:10pm • Filed to: DARK MATTER ~

Home News U.S. Sport TV&Showbiz Australia Femail Health Science

Latest Headlines | Science | Pictures | Discounts

'Dark matter hurricane' blowing at 310 miles per SECOND is on a collision course with Earth and may finally offer proof the mysterious material exists

News

per SECOND

Urgent: "Scientist "Claim Dark Matter Hurricane" Is Coming

28,497 views	701	4 1 62	A SHARE	≡+ SAVE	
--------------	-----	---------------	---------	---------	--

SUBSCRIBE 293K

How much dark matter in SI?

We remain agnostic and ask: What fraction of DM in S1 is needed to detect it in a DM experiment?

Xenon: what it measures

Spectrum is relatively featureless... ...except in a sweet spot around 20 GeV

Xenon: what it measures

Spectrum is relatively featureless...

... except in a sweet spot around 20 GeV

Xenon: distinguishing SHM and SHM+SI

How big is the effect?

Axion haloscope: example signal

ADMX: precision astronomy

ADMX: precision astronomy

Could measure properties of SI dark matter component eg. velocity dispersion

Height of feature depends on SI density and velocity dispersion

More general substructure: 'Dark Shards'

55

More general substructure

O'Hare, Evans, CM et al arXiv:1909.04684

Impact on the nuclear recoil spectrum is always small

Axion haloscopes

Directional signals: hotspots away from Cygnus

Summary

- Robust particle physics constraints/measurements requires robust halo model
- Gaia has opened a new era in understanding the Milky Way
- We have investigated the impact on *nuclear recoils* and *axion* haloscopes of
 ★ the Gaia Sausage (modest)
 - * the SI stream and additional substructure (more dramatic)

Next:

- work with simulations to refine properties
- investigate properties on wider range of experiments

Thanks

Backup: effects of substructure can be important as the following slides show

Modulation signals: peak day changes

Modulation signals: amplitude changes

Directional signals: hotspots away from Cygnus

Directional signals: hotspots away from Cygnus

Axion power spectrum: SI and S2 leave distinctive features

Sun's speed

$$f_{\text{Earth}}(\mathbf{v},t) = f_{\text{Gal}}(\mathbf{v} + \mathbf{v_0} + \mathbf{v_{pec}} + \mathbf{v_E}(t))$$

$$\frac{\vec{v}_{\text{Sun}}}{R_0} = 30.24 \pm 0.12 \text{ km s}^{-1} \text{ kpc}^{-1} \text{ Well known } \text{Reid \& Brunthalter}_{\text{arXiv:0408107 [astro-ph]}}$$

Earth distance from Gal. Centre now well known!

$$v_0 + V_{\rm pec} = 247.4 \pm 1.4 \ \rm km/s$$

 $V_{\rm pec} = 12 \pm 2 \text{ km/s}$

Gravity Collaboration arXiv:1904.05721

 v_0 far from 220 km/s !

Time to update v0 to 235 km/s?

Also consistent with McMillan arXiv:1608.00971 and Eilers et al arXiv:1810.09466 67

Escape speed

Standard value from RAVE (2006): $v_{
m esc} = 544^{+64}_{-46} \ {
m km/s}$ arXiv:0611671

Better(?) RAVE result (2013): $v_{\rm esc} = 533^{+54}_{-41} \text{ km/s}$ arXiv:1309.4293

Best current value (with Gaia data): $v_{\rm esc} = 528^{+24}_{-25} \text{ km/s}$

Deason et al arXiv:1901.02016

Maintain the status-quo? some preference for a lower value but 544 km/s still consistent

Local DM density

Two broad approaches to getting a value:

I. Global measurements

Model the whole of the Milky Way halo (baryons + dark matter)

Give values with smaller errors but with more model dependence

2. Local measurements

Model kinematics of stars near the Solar System

Give values with larger errors but with less* model dependence

Local DM density over time

Excellent resource is the review by Justin Read (arXiv:1404.1938)

Local DM density in recent years

11th September - TAUP 2019

P. F. de Salas

(Still) difficult to argue that any value in the range 0.2 - 0.6 GeV/cm³ is better than any other