The Mu2e Experiment : A Search for Charged Lepton Flavour Violation in Muons

Andrew Edmonds on behalf of the Mu2e collaboration

University of Birmingham Seminar, 1st June 2022

Boston University

Outline

Motivation

The Muon in the Standard Model and Hints of New Physics Charged Lepton Flavour Violation and Muon-to-Electron Conversion

The Mu2e Experiment

Producing and Stopping the Highly-Intense Muon Beam Detecting the Signal and Mitigating Backgrounds

Conclusion

Future Prospects

Motivation

The Muon in the Standard Model and Hints of New Physics

The Muon

Standard Model of Elementary Particles

The muon is the second-generation charged lepton

In the Standard Model:

- one can calculate their properties to high precision,
- lepton interactions with gauge bosons are flavour independent (lepton universality), and
- lepton flavour is conserved

It's an exciting time for muon physics!

Starting to see evidence that the Standard Model does not fully describe muons

anomalous magnetic moment measured again

hints of lepton universality violation

Motivation

Charged Lepton Flavour Violation and Muon-to-Electron Conversion

Charged Lepton Flavour Conservation

Standard Model of Elementary Particles

Muons conserve lepton flavour:

	μ^-	\rightarrow	e^-	$\bar{\nu}_e$	$ u_{\mu}$
L_{μ} :	+1		0	0	+1
L _e :	0		+1	-1	0

Flavour is not conserved in:

- quarks (via quark mixing); and
- neutrinos (via neutrino oscillations)

So why don't we see muons violate flavour conservation?

Charged Lepton Flavour Violation (CLFV)

The Standard Model with neutrino masses (ν SM) says its unobservably rare...

...but many Beyond Standard Model (BSM) theories predict enhanced rates of CLFV

Any observation of CLFV would be clear evidence of New Physics!

CLFV Searches

Muons are a great experimental tool because

- they have a long lifetime, and
- we can create a lot of them.

There are three possible CLFV processes:

- $\bullet \ \mu \to e \gamma$
- $\mu \rightarrow eee$

•
$$\mu^- + N(Z, A) \rightarrow e^- + N(Z, A)$$

Muon-to-electron conversion sensitive to many different BSM models

History of CLFV Searches in Leptons

Muon-to-electron Conversion

Muon-to-electron conversion occurs in muonic atoms

• stop low-energy muons in a stopping target

It has a very simple signal

• a mono-energetic electron

Current limit (SINDRUM II on Au): $R_{\mu \to e} < 7 \times 10^{-13}$, where

$$R_{\mu \to e} = \frac{\Gamma\left(\mu^- + N(Z, A) \to e^- + N(Z, A)\right)}{\Gamma\left(\mu^- + N(Z, A) \to \nu_\mu + N(Z - 1, A)\right)}$$

The Mu2e experiment will search for this process in Al and improve on this limit by four orders of magnitude!

$$R_{\mu \to e} = \frac{\Gamma \left(\mu^{-} + N(Z, A) \to e^{-} + N(Z, A)\right)}{\Gamma \left(\mu^{-} + N(Z, A) \to \nu_{\mu} + N(Z - 1, A)\right)} < 8 \times 10^{-17} \text{ (90\% CL)}$$
$$\tau_{\mu\text{-Al}} = 864 \text{ ns, } E_{\text{signal}} = 105 \text{ MeV}$$

Need to stop ${\it O}(10^{18})~\mu^-$ and have $\ll 1$ background event

- Production Solenoid
 - pulsed proton beam hits production target
 - pions collected by the graded solenoidal magnetic field
- Transport Solenoid
 - pions decay to muons
 - charge and momentum selection

- Detector Solenoid
 - muons stop in thin Al foils
 - muonic atom decays
 - resulting electrons are detected by a tracker and a calorimeter
- Other Detectors (not shown)
 - cosmic ray veto
 - extinction and stopping target monitors

Producing and Stopping the Highly-Intense Muon Beam

Proton Beam

Backgrounds that are prompt with proton-on-target could be significant

- take advantage of muonic atom's long lifetime and use a pulsed beam to greatly reduce beam-related backgrounds
- i.e. signal is emitted in the gaps between proton pulses

Accelerator

Protons will be slow extracted from the delivery ring to generate proton pulses

Production Target

Tungsten production target is in a very challenging environment (8 kW beam power, 8 GeV protons):

- design optimized for pion production, radiation cooling, and structural integrity
 - \rightarrow segmented target

CAD Drawing of Mu2e Production Target

Photo of Mu2e Production Target in Mounting Rig

Production Solenoid

Graded magnetic field collects pions going backwards w.r.t proton beam

• typically lower momentum \rightarrow will stop in the stopping target later

Current status: all coils fabricated, testing and cold mass assembly underway

Photo of Production Solenoid Coils

Without PS Field

With PS Field

Transport Solenoid and Collimators

Transport solenoid separates positive and negative pions/muons

• rotatable collimator blocks positive muons

Current status: all coils delivered, TSu and TSd cold masses assembled (right)

Example negative and positive muons travelling around Transport Solenoid

Transport Solenoid Cold Masses

Stopping Target

In the detector solenoid, we have the stopping target

- + 37 thin aluminium foils, 100 $\mu \rm{m}$ thick
- we will stop 10^{10} μ^- / s

Momentum distribution of stopped (all) muons at stopping target

Photo of the Stopping Target

Detecting the Signal and Mitigating Backgrounds

Decay-in-Orbit (DIO) Background

When the muon is bound in a muonic atom, it could also decay to an electron and two neutrinos $(\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e)$

- happens \sim 40% of the time in muonic-Al

Nuclear recoil modifies energy spectrum:

- still has a peak at \sim 50 MeV, but
- tail extends up to the conversion energy

Cartoon of DIO Energy Spectrum (see Szafron, Czarnecki PhysRevD.94.051301 + others)

Decay-in-Orbit (DIO) Background

When the muon is bound in a muonic atom, it could also decay to an electron and two neutrinos $(\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e)$

- happens \sim 40% of the time in muonic-Al

Nuclear recoil modifies energy spectrum:

- still has a peak at \sim 50 MeV, but
- tail extends up to the conversion energy

Expected signal $(R_{\mu \to e} = 10^{-15})$ and DIO spectra from simulation (with resolution and energy loss)

Tracker

Need a high-resolution momentum measurement

- minimize energy loss by operating in vacuum and using low mass straws
- extra hit position information with high-angle stereo overlaps and readout on both ends of straw
- reduce background hits with a central hole

5 mm diameter. 15 μ m

1 tracker = 36 planes = 20736 straws

planes with central hole

Tracker

Need a high-resolution momentum measurement

- minimize energy loss by operating in vacuum and using low mass straws
- extra hit position information with high-angle stereo overlaps and readout on both ends of straw
- reduce background hits with a central hole

5 mm diameter. 15 μ m

1 tracker = 36 planes = 20736 straws

planes with central hole

Detector Solenoid

Need to measure the magnetic field to 10^{-4} T

• dedicated DS field mapping runs

Detector extracted position for field mapping

DS Field Mapper with Hall probe locations

Calorimeter

Want a fast energy measurement

- can be used for the trigger
- combine with momentum measurement for e/μ separation
- energy clusters can also be used to seed the track fit

undoped Csl crystals (20 × 3.4 × 3.4 cm³)

Calorimeter Disk

Cosmic Ray Veto

Need to know when cosmic rays enter experiment

- expect 1 Ce-like electron per day from cosmic muons
- CRV covers full detector solenoid and half the transport solenoid
- must be 99.99% efficient

Beam-related Backgrounds

Backgrounds that are prompt with proton-on-target could be significant

- we are looking for something so rare, that any protons that arrive at production target between proton pulses could produce a large background
- we need extinction level (ratio of protons in and out of pulse) to be $< 10^{-10}$

Extinction Monitor

Ensure extinction meets requirements by tracking protons that scatter off production target

• uses pixel sensors and trigger scintillators

The Denominator of $R_{\mu-e}$

Need to know the denominator of $R_{\mu-e}$:

$$R_{\mu
ightarrow e} = rac{N_{
m signal}}{N_{
m captures}}$$

We count the number of stopped and captured muons by detecting characteristic x- and γ -rays from:

- stopped muons
 - 2p 1s x-ray (347 keV)
- captured muons (μ + $^{27}{
 m Al}$ ightarrow $^{27}{
 m Mg}$ + u_{μ})
 - $^{27}\mathrm{Mg}
 ightarrow ^{27}\mathrm{Al} + \gamma$ (844 keV)
 - $^{27}\mathrm{Mg^*}
 ightarrow ^{27}\mathrm{Mg} + \gamma$ (1809 keV)

HPGe high gain energy spectra, all AI runs Data

Stopping Target Monitor

The stopping target monitor consists of a HPGe and an LaBr detector $% \left({{{\rm{A}}_{{\rm{B}}}} \right)$

• LaBr can handle higher rates at expense of energy resolution

Detectors located far downstream because beam flash is too bright

Conclusion

Future Prospects

Mu2e Schedule

- Detector commissioning with cosmic rays in 2023
- Beam on production target in late 2024
- Take Run 1 data in 2025 and 2026 until LBNF/PIP-II shutdown
 - x1000 improvement over SINDRUM-II
- Resume data collection in 2029 after long shutdown
 - ×10000 improvement over SINDRUM-II

Run 1 Sensitivity Estimate

We recently completed a sensitivity estimate for Run 1

- 5 σ discovery $R_{\mu \rightarrow e} = 1.1 \times 10^{-15}$
- 90% CL $R_{\mu
 ightarrow e} < 5.9 imes 10^{-16}$
- 1000x better than SINDRUM-II limit
- paper to be submitted to Universe

Total background:

- 0.11 ± 0.03 (stat.+syst.) events
 - cosmics = 0.05 ± 0.01 events
 - DIO = 0.04 \pm 0.02 events

Signal and Background PDFs for $R_{\mu
ightarrow e} = 10^{-15}$

Beyond Mu2e

An upgraded Mu2e-II has been proposed (link)

- takes advantage of PIP-II upgrade at Fermilab
- upgraded detectors (e.g. thinner straws)
- ×10 improvement in sensitivity, or measure in other muonic atoms

Beyond Mu2e-II, a fuller CLFV program for Fermilab is being pursued as part of Snowmass (link)

•
$$\mu
ightarrow e\gamma$$
, $\mu
ightarrow eee$, $\mu N
ightarrow eN$

Conclusion

Observation of charged lepton flavour violation would be an unambiguous sign of new physics

Mu2e will search for the charged lepton flavour violating process of $\mu \rightarrow e$ conversion with a 90% CL upper limit of $R_{\mu \rightarrow e} < 8 \times 10^{-17}$

The experiment is under construction with beam commissioning to take place in 2024, and data-taking to begin in 2025

Thanks for listening! Any questions?

Back Up

Run 1 Background Table

We expect 0.11 ± 0.03 background events for Run 1 based on our hit level Monte Carlo simulation

Channel	Mu2e Run 1 Background Expectation		
Cosmics	$0.048 \pm 0.010 \text{ (stat)} \pm 0.010 \text{ (syst)}$		
DIO	$0.038 \pm 0.002 \; (\text{stat})^{+0.026}_{-0.016} \; (\text{syst})$		
Antiprotons	$0.010 \pm 0.003 \text{ (stat)} ^{+0.010}_{-0.004} \text{ (syst)}$		
RPC in-time	$0.011 \pm 0.002 \text{ (stat)} ^{+0.001}_{-0.002} \text{ (syst)}$		
RPC out-of-time	negligibly small		
RMC	negligibly small		
Beam electrons	negligibly small		
Total	$0.107\pm0.032~(\mathrm{stat}\oplus\mathrm{syst})$		

ML for Track Quality

We need to understand the far tails of our resolution function

 we found that using ML methods to select high-quality tracks produces larger background reduction than simple cuts¹

¹A. Edmonds et al 2021 JINST 16 T08010

Sensitivity Reach

If we assume a toy Lagrangian of the form:

$$\mathcal{L}_{\mathsf{CLFV}} = \frac{m_{\mu}}{(1+\kappa)\Lambda^{2}} \overline{\mu}_{R} \sigma_{\mu\nu} e_{L} F^{\mu\nu} + \frac{\kappa}{(1+\kappa)\Lambda^{2}} \overline{\mu}_{L} \gamma_{\mu} e_{L} \left(\sum_{q=u,d} \overline{q_{L}} \gamma^{\mu} q_{L} \right)$$

Bernstein, de Gouvea

BSM Theories

A selection of BSM theories that predict enhanced rates of CLFV processes:

