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Outline 

•  Strongly interacting matter in extremes: 
the Quark-Gluon Plasma 

•  Measuring apparatus and methodology 

•  Recent measurements 

-  Global event observables 

-  Heavy quarks 

•  Summary and outlook 
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Different phases of matter 

     Pressure        +      Heat      à  Quark-Gluon Plasma 
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Proton and neutron 
are colour neutral 
states 

How can we liberate quarks? 
Create a Quark-Gluon Plasma 

•  Strong interaction 
described by 
Quantum-
Chromodynamics 

•  Quarks are 
confined (hadrons) 

•  MIT bag model 

gluon 

quark 

Quark confinement 
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The Quark-Gluon Plasma (QGP) 

Heat and pressure Phase transition to QGP 
T ≈ 1012 K ≈ 105x sun’s core  

•  Novel state of matter: quarks and gluons are liberated 
•  Evolution of the early universe 

 - QGP may still exist in neutron stars 

(deconfinement) 
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Quark-hadron  
phase transition 

Evolution of the Universe 
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•  Temperature:  
1000 billion degrees 

•  Lifetime: 
10 microseconds 

Little bang in the lab 

Sun 



Te
m

pe
ra

tu
re

 

Quark-Gluon Plasma 

Hadronic 
matter 

Baryon density 

•  Lattice QCD predicts a phase 
transition from hadronic 
matter to a deconfined state 

• Critical energy density 

LHC,  
RHIC 

QCD phase diagram 
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Study strongly interacting matter 
under extreme conditions: high 
temperature and high density 

4)26( CC T±=ε
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The Quark-Gluon Plasma (QGP) 

Heat and pressure Phase transition to QGP 
T ≈ 1012 K ≈ 105x sun’s core  

•  Novel state of matter: quarks and gluons are liberated 
•  Evolution of the early universe 
•  Produce and study QGP in the laboratory 

-  high density and temperature 
- sufficient large reaction volume  

à Collisions of heavy atomic nuclei (lead or gold) 
•  Large Hadron Collider: Exploration of the QGP properties  

(deconfinement) 



Large Hadron Collider at CERN 

8.5 km 

100 m 
•  Data taking since 
November 2010 
•  Ion species and energies 
  - Pb-Pb, √sNN = 2.76 TeV 
  - pp, √s = 0.9, 2.36, 2.76,  

          7 and 8 TeV  
  - p-Pb, √sNN  = 5.02 TeV  
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•  1232 dipole magnets 
•  Two counter-rotating 
beams 
•  Operation with superfluid 
helium at 1.9K (~120 tons) 
•  8 Tesla bending field 
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•  Time scale ≈ few 10-24 s 
•  Total energy in a lead-lead collision = 1144 TeV = 0.18 mJ 
⇒ production of new particles 

Simulation of a  
lead-lead collision at the LHC 

10-14 m 



Space-time evolution of a heavy-ion collision 

 

e γ	


space 

time 

Hard scattering 

Pb Pb 

Hadronisation  

Freeze-out 

jet J/Ψ,D	


          QGP 
Thermalistion 

γ	
  π+/-	
d p K Ξ  φ Ω	
 Λ	
π0	
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Soft and hard probes 



Detectors 

•  PID over a very broad momentum range (>100 MeV/c) 
•  Large acceptance in azimuth 
•  Mid-rapidity coverage |η| < 0.9 and -4 < η < -2.5 in 
forward region 
•  Impact parameter resolution better than 65 µm for 
pT > 1 GeV/c 

•  Tracking (pT resolution: 1-2%  
up to pT ~ 100 GeV/c) and calorimetry  
•  Trigger selectivity over a large range 
in rapidity and full azimuth 

Three main subsystems with a full 
coverage in azimuth:  
•  Inner Detector: tracking |η| < 2.5  
•  Calorimetry |η| < 4.9  
•  Muon Spectrometer |η| < 2.7  
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Typical event displays 

Central lead-lead collision at 
√s = 2.76 TeV per nucleon-
nucleon pair 
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Global event observables 

•   



Charged particle multiplicity 

Phys. Rev. Lett. 105, 252301 (2010)       Phys. Rev. Lett. 106, 032301 (2011)      

vs. cms energy vs. number of participants 

•  Power law dependence fits well and 
faster in Pb-Pb ~s0.15 than in pp ~s0.11 

•  Multiplicity ~ 2 x NRHIC  
•  Energy density ~ 3 x εRHIC  

• Very similar centrality dependence 
at LHC and RHIC  
Once corrected for difference in absolute values 

Denser and hotter system  
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System size 

VLHC ~ 2 x VRHIC τf (LHC) ~ 1.4 x τf (RHIC) 

Lifetime 

System size and lifetime 

Phys. Lett. B 696, 328 (2011) 

•  From Bose-Einstein Correlations analysis (HBT) 
•  2 × freeze-out volume and 1.4 × lifetime compared to RHIC 

Fireball has larger volume and longer lifetime 
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•  Multiple interactions lead to thermalisation → hydrodynamic 
behaviour of the system 
•  Pressure gradient generates collective 
flow → anisotropy in momentum space 
•  Fourier decomposition:  

Azimuthal anisotropy 

coordinate space:    momentum space:  
initial anisotropy     final anisotropy 

x

z 

y 

py 

px 

x

y

p
p

atan=φpressure and 
multiple collisions 
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€ 

dN
d(ϕ −ψn )

∝1+ 2 vn
n=1
∑ cos(n[ϕ −ψn ])

€ 

vn = cos(n[ϕ −ψn ])
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v2 of identified particles in Pb-Pb 

Why? 
•  Constraints on initial conditions, 

such as particle production 
mechanisms  

•  Probes freeze-out conditions of 
the system 

•  Checks number of constituents 
quarks scaling  

arXiv:1405.4632  

•  Low pT: mass ordering observed à interplay between radial and 
elliptic flow  

•  Qualitative description with hydrodynamical calculations and hadronic 
cascade model à small η/s favoured  

•  High pT: particles tend to group into mesons and baryons  
Andre Mischke (Utrecht) 20 
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Collectivity in particle emission 

•  Collective motion of 
particles gives 
information about the 
toughness (viscosity) 

•  Quark matter is the 
most perfect fluid in the 
world 

•  It has less friction than 
super-fluid helium 

Water               Honey 
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Heavy quarks  
(charm and beauty) 

•   



•  “Simplest way” to establish  
the properties of a system 

-  calibrated probe 
-  calibrated interaction 
-  suppression pattern tells about 
density profile 
   

•  Heavy-ion collision 
-  hard processes serve as 
calibrated probe (pQCD) 
-  traversing through the medium 
and interacting strongly  
-  suppression provides density 
measurement 
-  General picture: parton energy 
loss through medium-induced 
gluon radiation and collisions 
with medium 

pp collision Pb-Pb collision 

Quark-Gluon 
Plasma 

after the collision 

Quantify medium effects with  
nuclear modification factor 
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Probing hot and dense QCD matter 
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Compare particle yield in  
lead-lead with the one in 
proton-proton collisions 
 
 
Nuclear modification factor: 
 
 
 

    RAA = 1 for photons 

    RAA < 1 for hadrons 

Quantification of medium effects  

Number of binary 
collisions from  
Glauber calculations 

light hadrons 

photons 
suppression 

RHIC 
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RAA(pT ) =
YieldAA(pT )

Nbin AA
Yieldpp(pT )



•   Symmetry breaking 
-  Higgs mass: electro-weak symmetry 
breaking → current quark mass 

-  QCD mass: chiral symmetry 
breaking → constituent quark mass 

•  Charm and beauty quark masses 
are not affected by QCD vacuum 
→ ideal probes to study QGP 

•  Test QCD at transition from 
perturbative to non-perturbative 
regime: c and b quarks provide 
hard scale for QCD calculations 

Heavy quarks are ideal probes 
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•  Charm and beauty quarks 
-  250-450 times heavier than light quarks  
-  short life times: 120-500 µm 

•  They are abundantly produced 
at the LHC; predominantly in the 
early phase of the collisions 

Ma
ss

 



~1 ~10 
time scale (fm/c) 

Thermalization 
of QGP 

Charm production 
τ ~ h/2mQ  

Quarkonia melts 
and flow develops 

Time evolution of a heavy-ion collision 

•  Gluon fusion dominates → sensitivity to initial state 
gluon distribution M. Gyulassy and Z. Lin, Phys. Rev. C51, 2177 (1995) 

•  Heavy quarks transverse through the QCD medium 
and interact strongly with it à energy loss 
•  Due to their mass (mQ >> Tc, ΛQCD) à higher 
penetrating power 

1015 ~0.1 

Hadronisation: 
QGP lifetime? 

Parton energy loss 

Charm, 
PYTHIA 6.208 
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S. Wicks et al., Nucl. Phys. A784, 426 (2007) 

Energy loss of heavy quarks in QCD matter 

parton 
hot and dense QCD matter • Radiative parton energy loss is 

colour charge dependent 
(Casimir coupling factor CR) 
  

 

• Dead-cone effect: gluon 
radiation suppressed at small 
angles (θ < mQ/EQ) 

ΔEg > ΔEu,d,s > ΔEc > ΔEb 

RAA(π) < RAA(D) < RAA(B)  

27 

€ 

ΔEmedium ∝αSCR ˆ q L2
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Final state particles containing 
charm quarks 

D0 D± 

Ds 
Λc 

J/ψ (c-cbar) 

D*+ 

My favorite is the D*+ = |cd〉 
-  narrow resonance (~0.1 MeV/c2) 
-  3-body decay  
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Reconstruction of charged D* mesons 

primary vertex 
(collision point) 

V  

•  Short life time  
•  Reconstruction of  

-  displaced vertices 
(accuracy better than 75 µm) 

-  particle trajectories 

•  Particle identification 
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•  Very good agreement 
between LHC experiments 

•  Consistency with NLO pQCD 
calculations, although at the 
upper limit 

à  Parton spectra from pQCD 
input for energy loss models 

à  Baseline for measurements 
in Pb-Pb 
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Prompt D meson RAA in Pb-Pb collisions 

•  First Ds
+(cs) measurement in heavy ion collisions 

•  Expectation: enhancement of strange D meson yield at intermediate 
pT if charm hadronizes via recombination in the medium 
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•  Strong suppression (factor 4-5) above 5 GeV/c in most central Pb-Pb, 
compared to binary scaling from pp 
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RAA: light versus heavy quark hadrons 

RAA
D meson > RAA

pions at low pT? 

à More data needed for final conclusion 

Andre Mischke (Utrecht) 

0-10% 

D0	


π±	




Prompt D0 meson RAA versus event plane 

More suppression at high pT out-of-plane with respect to 
in-plane due to different path length 

in-plane 

out-of-plane 

x

z 

y 
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Comparison with model calculations 

•  Energy loss models describe 
RAA of prompt D mesons 
reasonably well 
•  Indication for rising RAA? 
•  No/little shadowing (initial-
state effect) is expected in this 
pT range 

•  Rad.+dissoc.: R. Sharma, I. Vitev and B.W. Zhang, Phys. Rev. C80, 054902 (2009), Y. He, I. Vitev and B.W. Zhang, Phys. Lett. B 713, 224 (2012) 
•  WHDG (coll.+rad. Eloss in anisotropic medium): W.A. Horowitz and M. Gyulassy, J. Phys. G38, 124114 (2011) 
•  POWLANG (coll. Eloss using Langevin approach): W.M. Alberico et al., Eur. Phyis J. C71,1666 (2011) 
•  BAMPS (coll. Eloss in expanding medium): O. Fochler, J. Uphoff, Z. Xu and C. Greiner, J. Phys. G38, 124152 (2011) 
•  Coll. + LPM rad. energy loss: P. B. Gossiaux, R. Bierkandt, and J. Aichelin, Phys. Rev. C79, 044906 (2009) 
•  BDMPS-ASW: N. Armesto, A. Dainese, C.A. Salgado and U.A. Wiedemann, Phys. Rev. D71, 054027 (2005) 
•  Coll. Eloss via D mesons resonances excitation + Hydro evolution: M. He, R.J. Fries and R. Rapp, Phys. Rev. Lett. 110, 112301 (2013) 
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p-Pb: measurement of initial state effects 

•  Important baseline measurement of cold nuclear matter effects 
(e.g., Cronin effect, nuclear shadowing, gluon saturation) 
•  D meson RpA shows consistency with unity and predictions from 
shadowing and CGC model predictions 
•  High-pT suppression of particle yield in Pb-Pb is a final state effect 

Andre Mischke (Utrecht) 35 
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Beauty RAA via non-prompt J/ψ	

CMS PAS HIN-12-014 

•  Non-prompt J/ψ in the most 
central collision (0-10%) is 
suppressed by a factor of 2.5 

•  More data needed 
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RAA of D and B mesons 

•  Comparison of prompt  
D mesons (ALICE) with J/ψ from 
beauty decays (CMS)  

•  D and B meson <pT> ~10 GeV/c 

•  First indication of the mass 
dependence of the parton energy 
loss: RAA

D < RAA
B 
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B 

D	


First open beauty measurement 
in p-Pb by CMS (QM 2014) 
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Conclusions 

•  LHC ideal for studying the properties of hot dense QCD matter	

- εinitial≫εcritical, large volume, long lifetime, high production rates for 
rare probes 

•  Many results from Pb-Pb data from Run-1 
- High degree of collectivity à perfect liquid  
- Parton-medium interaction à parton energy loss mechanisms  

•  p-Pb collisions 
- More than control measurements; mechanisms at work not fully 
understood  

•  Precision measurements needed to gain more insights into 
energy loss mechanisms and further constraint model calculations  
•  Many more exciting results ahead of us 

- LHC Run-2 (5.1 TeV, 2015-2017)  
- After detector upgrades (2018/19) 
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