

Universiteit Utrecht

Probing Hot QCD Matter

André Mischke Institute for Subatomic Physics

Seminar, School of Physics and Astronomy, University of Birmingham, UK - 29 January 2015

 Strongly interacting matter in extremes: the Quark-Gluon Plasma

- Measuring apparatus and methodology
- Recent measurements
 - Global event observables
 - Heavy quarks
- Summary and outlook

Quark confinement

 Strong interaction described by Quantum-Chromodynamics

 Quarks are confined (hadrons)

MIT bag model

Proton and neutron are colour neutral states

How can we liberate quarks? Create a Quark-Gluon Plasma

- Novel state of matter: quarks and gluons are liberated
- Evolution of the early universe

- QGP may still exist in neutron stars

(deconfinement)

Little bang in the lab

Temperature:
 1000 billion degrees

Lifetime:
10 microseconds

QCD phase diagram

Baryon density

Study strongly interacting matter under extreme conditions: high temperature and high density

- Lattice QCD predicts a phase transition from hadronic matter to a deconfined state
- Critical energy density $\varepsilon_C = (6 \pm 2)T_C^4$

- Novel state of matter: quarks and gluons are liberated
- Evolution of the early universe
- Produce and study QGP in the laboratory
 - high density and temperature
 - sufficient large reaction volume
- Collisions of heavy atomic nuclei (lead or gold)
- Large Hadron Collider: Exploration of the QGP properties

(deconfinement)

Large Hadron Collider at CERN

Andre Mischke (Utrecht)

Total energy in a lead-lead collision = 1144 TeV = 0.18 mJ

 \Rightarrow production of new particles

Detectors

- PID over a very broad momentum range (>100 MeV/c)
- Large acceptance in azimuth
- Mid-rapidity coverage $|\eta|$ < 0.9 and -4 < η < -2.5 in forward region
- Impact parameter resolution better than 65 μm for p_T > 1 GeV/c

Three main subsystems with a full coverage in azimuth:

- Inner Detector: tracking $|\eta| < 2.5$
- Calorimetry $|\eta| < 4.9$
- Muon Spectrometer $|\eta| < 2.7$

Andre Mischke (Utrecht)

• Tracking (p_T resolution: 1-2% up to $p_T \sim 100$ GeV/c) and calorimetry • Trigger selectivity over a large range in rapidity and full azimuth

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker 4

Typical event displays

Central lead-lead collision at $\sqrt{s} = 2.76$ TeV per nucleonnucleon pair

Andre Mischke (Utrecht)

Global event observables

Charged particle multiplicity

- Power law dependence fits well and faster in Pb-Pb ~s^{0.15} than in pp ~s^{0.11}
- Multiplicity ~ 2 x N_{RHIC}
- Energy density ~ 3 x ϵ_{RHIC}

• Very similar centrality dependence at LHC and RHIC Once corrected for difference in absolute values

Denser and hotter system

System size and lifetime

- From Bose-Einstein Correlations analysis (HBT)
- 2 × freeze-out volume and 1.4 × lifetime compared to RHIC

Fireball has larger volume and longer lifetime

Azimuthal anisotropy

- Multiple interactions lead to thermalisation → hydrodynamic behaviour of the system
- Pressure gradient generates collective flow \rightarrow anisotropy in momentum space
- Fourier decomposition:

$$\frac{\mathrm{d}N}{\mathrm{d}(\varphi - \psi_n)} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos(n[\varphi - \psi_n])$$
$$v_n = \left\langle \cos(n[\varphi - \psi_n]) \right\rangle$$

Andre Mischke (Utrecht)

v₂ of identified particles in Pb-Pb

Why?

- Constraints on initial conditions, such as particle production mechanisms
- Probes freeze-out conditions of the system
- Checks number of constituents quarks scaling
- Low p_T: mass ordering observed → interplay between radial and elliptic flow
- Qualitative description with hydrodynamical calculations and hadronic cascade model \rightarrow small η /s favoured
- High p_T : particles tend to group into mesons and baryons

Collectivity in particle emission

 Collective motion of particles gives information about the toughness (viscosity)

 Quark matter is the most perfect fluid in the world

 It has less friction than super-fluid helium

Heavy quarks (charm and beauty)

Probing hot and dense QCD matter

Quantify medium effects with nuclear modification factor

- "Simplest way" to establish the properties of a system
 - calibrated probe
 - calibrated interaction
 - suppression pattern tells about density profile
- Heavy-ion collision
 - hard processes serve as calibrated probe (pQCD)
 - traversing through the medium and interacting strongly
 - suppression provides density measurement
 - <u>General picture</u>: parton energy loss through medium-induced gluon radiation and collisions with medium

Quantification of medium effects

Compare particle yield in lead-lead with the one in proton-proton collisions

Nuclear modification factor:

$$R_{AA}(p_T) = \frac{\text{Yield}_{AA}(p_T)}{\left\langle N_{bin} \right\rangle_{AA} \text{Yield}_{pp}(p_T)}$$

 R_{AA} = 1 for photons R_{AA} < 1 for hadrons

Heavy quarks are ideal probes

Charm and beauty quarks

 - 250-450 times heavier than light quarks
 - short life times: 120-500 μm

• They are abundantly produced at the LHC; predominantly in the early phase of the collisions

- Symmetry breaking
 - Higgs mass: electro-weak symmetry breaking \rightarrow current quark mass
 - QCD mass: chiral symmetry breaking \rightarrow constituent quark mass
- Charm and beauty quark masses are not affected by QCD vacuum
 → ideal probes to study QGP

• Test QCD at transition from perturbative to non-perturbative regime: c and b quarks provide hard scale for QCD calculations

Time evolution of a heavy-ion collision

- Gluon fusion dominates \rightarrow sensitivity to initial state gluon distribution *M. Gyulassy and Z. Lin, Phys. Rev. C51, 2177 (1995)*
- Heavy quarks transverse through the QCD medium and interact strongly with it \rightarrow energy loss
- Due to their mass (m_Q >> T_c, Λ_{QCD}) \rightarrow higher penetrating power

Energy loss of heavy quarks in QCD matter

 Radiative parton energy loss is colour charge dependent (Casimir coupling factor C_R)

 $\left<\Delta E_{medium}\right> \propto \alpha_S C_R \hat{q} L^2$

• Dead-cone effect: gluon radiation suppressed at small angles ($\theta < m_Q/E_Q$)

$$\Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$$

 $R_{AA}(\pi) \leq R_{AA}(D) \leq R_{AA}(B)$

Final state particles containing charm quarks

My favorite is the D^{*+} = $|cd\rangle$

- narrow resonance (~0.1 MeV/c^2)
- 3-body decay

Reconstruction of charged D* mesons

- Short life time
- Reconstruction of
 - displaced vertices
 - (accuracy better than 75 $\mu\text{m})$
 - particle trajectories
- Particle identification
- ▶ Rest mass charged D* is $2010.28 \pm 0.13 \text{ MeV}/c^2$
- \blacktriangleright D*+ short mean lifetime: (6.9 \pm 1.9) \times 10^{-21} s
- ▶ D*+ has following main decay channels:

▶ $\mathbf{D}^{*+} \rightarrow \mathbf{D}^0 \pi_s^+$	$(\Gamma_i/\Gamma = 67.7 \pm 0.5\%)$
\blacktriangleright D ^{*+} \rightarrow D ⁺ π_s^0	$(\Gamma_i/\Gamma = 30.7 \pm 0.5\%)$
► D ^{*+} \rightarrow D ⁺ γ	$(\Gamma_i / \Gamma = 1.6 \pm 0.4\%)$

- $\blacktriangleright~\rm D^0$ rest mass is 1864.63 $\pm~0.14~\rm Mev/c^2$
- D⁰ mean lifetime $(4.101 \pm 0.015) \bigvee 10^{-13}$ s, decay channel:

► $D^0 \to K^- \pi^+$ ($\Gamma_i / \Gamma = 3.89 \pm 0.05\%$)

• Total branching ratio of $D^{*+} \rightarrow D^0 \pi_s^+ \rightarrow (K^- \pi^+) \pi_s^+$ is $\Gamma_i / \Gamma = 2.63\%$

Total charm production cross section in pp

- Very good agreement between LHC experiments
- Consistency with NLO pQCD calculations, although at the upper limit
- → Parton spectra from pQCD input for energy loss models
- → Baseline for measurements in Pb-Pb

Prompt D meson R_{AA} in Pb-Pb collisions

- First $D_s^+(c\bar{s})$ measurement in heavy ion collisions
- Expectation: enhancement of strange D meson yield at intermediate
- \boldsymbol{p}_{T} if charm hadronizes via recombination in the medium
- Strong suppression (factor 4-5) above 5 GeV/c in most central Pb-Pb, compared to binary scaling from pp

Andre Mischke (Utrecht)

R_{AA}: light versus heavy quark hadrons

 \rightarrow More data needed for final conclusion

Prompt D⁰ meson R_{AA} versus event plane

More suppression at high p_T out-of-plane with respect to in-plane due to different path length

Comparison with model calculations

- Energy loss models describe R_{AA} of prompt D mesons reasonably well
- Indication for rising R_{AA}?

 No/little shadowing (initialstate effect) is expected in this

- Rad.+dissoc.: R. Sharma, I. Vitev and B.W. Zhang, Phys. Rev. C80, 054902 (2009), Y. He, I. Vitev and B.W. Zhang, Phys. Lett. B 713, 224 (2012)
- WHDG (coll.+rad. Eloss in anisotropic medium): W.A. Horowitz and M. Gyulassy, J. Phys. G38, 124114 (2011)
- POWLANG (coll. Eloss using Langevin approach): W.M. Alberico et al., Eur. Phyis J. C71,1666 (2011)
- BAMPS (coll. Eloss in expanding medium): O. Fochler, J. Uphoff, Z. Xu and C. Greiner, J. Phys. G38, 124152 (2011)
- Coll. + LPM rad. energy loss: P. B. Gossiaux, R. Bierkandt, and J. Aichelin, Phys. Rev. C79, 044906 (2009)
- BDMPS-ASW: N. Armesto, A. Dainese, C.A. Salgado and U.A. Wiedemann, Phys. Rev. D71, 054027 (2005)
- Coll. Eloss via D mesons resonances excitation + Hydro evolution: M. He, R.J. Fries and R. Rapp, Phys. Rev. Lett. 110, 112301 (2013)

Andre Mischke (Utrecht)

p-Pb: measurement of initial state effects

- Important baseline measurement of cold nuclear matter effects (e.g., Cronin effect, nuclear shadowing, gluon saturation)
- D meson R_{pA} shows consistency with unity and predictions from shadowing and CGC model predictions

• High-p_T suppression of particle yield in Pb-Pb is a final state effect Andre Mischke (Utrecht)

Beauty R_{AA} via non-prompt J/ ψ

- Non-prompt J/ ψ in the most central collision (0-10%) is suppressed by a factor of 2.5
- More data needed

$R_{AA}\ of\ D$ and B mesons

 Comparison of prompt
 D mesons (ALICE) with J/ψ from beauty decays (CMS)

• D and B meson $<p_T> \sim 10$ GeV/c

• First indication of the mass dependence of the parton energy loss: $R_{AA}^{D} < R_{AA}^{B}$

Conclusions

- LHC ideal for studying the properties of hot dense QCD matter
 - $\epsilon_{\text{initial}} \gg \epsilon_{\text{critical}}$, large volume, long lifetime, high production rates for rare probes
- Many results from Pb-Pb data from Run-1
 - High degree of collectivity \rightarrow perfect liquid
 - Parton-medium interaction \rightarrow parton energy loss mechanisms
- p-Pb collisions
 - More than control measurements; mechanisms at work not fully understood
- Precision measurements needed to gain more insights into energy loss mechanisms and further constraint model calculations
- Many more exciting results ahead of us
 - LHC Run-2 (5.1 TeV, 2015-2017)
 - After detector upgrades (2018/19)