Probing Higgs Boson with

Vector-Boson Scattering

Alexander Belyaev

Southampton University & Rutherford Appleton LAB

AB, A. Oliveira, R. Rosenfeld, M. Thomas : JHEP 1305 (2013) 005, arXiv:1212.3860 AB, E. Boos, V. Bunichev, Y. Maravin, A. Pukov, R. Rosenfeld, M. Thomas : arXiv:1405.1617 (Les Houches 2013: Physics at TeV Colliders. Contribution #6) AB, M.Thomas, P.Hamers, work in progress

18 November 2015

OUTLINE

• Preface

- the history and the role of vector boson scattering (VBF),
 V_Ls, their connection to Higgs boson physics and unitarity.
- $VV \rightarrow VV$ process at the LHC
 - selection of the longitudinal vector bosons
 - model-independent sensitivity to HVV coupling using three main observables
- VV→ hhh at future pp colliders
 - cross section enhancement and unitarity violation
 - high sensitivity to HVV coupling
- Conclusions

Higgs Mechanism in the SM

Spontaneous breaking Yang-Mills gauge theory via fundamental scalar:

add one scalar doublet φ with $I = \frac{1}{2}, Y = +\frac{1}{2}$ $\mathcal{L} = |D_{\mu}\varphi|^2 - V(|\varphi|) - \frac{1}{4}(F^a_{\mu\nu})^2 - \frac{1}{4}(G^a_{\mu\nu})^2$ + couplings to quarks and leptons

where $V(|arphi|)=\mu^2|arphi|^2+\lambda|arphi^4|$ and $\ \mu^2<0$ for which $\ \langlearphi
angle
eq 0$

Higgs Mechanism in the SM

Spontaneous breaking Yang-Mills gauge theory via fundamental scalar:

add one scalar doublet φ with $I = \frac{1}{2}, Y = +\frac{1}{2}$ $\mathcal{L} = |D_{\mu}\varphi|^2 - V(|\varphi|) - \frac{1}{4}(F^a_{\mu\nu})^2 - \frac{1}{4}(G^a_{\mu\nu})^2$ + couplings to quarks and leptons where $V(|\varphi|) = \mu^2 |\varphi|^2 + \lambda |\varphi^4|$ and $\mu^2 < 0$

for which $\left< arphi \right>
eq 0$

The filed arphi has the general structure

$$arphi(x) = \left(egin{array}{c} \pi^+(x) \ (v+h(x)+i\pi^0(x))/\sqrt{2} \end{array}
ight)$$

which be written as ("polar decomposition")

$$arphi(x) = exp\left(irac{\pi^a(x) au^a}{v}
ight)\left(egin{array}{c} 0\ (v+h(x))/\sqrt{2} \end{array}
ight)$$

 π^{\pm} , π^{0} are Goldstone bosons In the theory with global symmetry, they are massless. In the theory with gauge symmetry, they are gauge degrees of freedom, and become part of W, Z

Higgs Mechanism in the SM

Spontaneous breaking Yang-Mills gauge theory via fundamental scalar:

add one scalar doublet φ with $I = \frac{1}{2}, Y = +\frac{1}{2}$ $\mathcal{L} = |D_{\mu}\varphi|^2 - V(|\varphi|) - \frac{1}{4}(F^a_{\mu\nu})^2 - \frac{1}{4}(G^a_{\mu\nu})^2$ + couplings to quarks and leptons where $V(|\varphi|) = \mu^2 |\varphi|^2 + \lambda |\varphi^4|$ and $\mu^2 < 0$

for which $\left< arphi \right>
eq 0$

The filed arphi has the general structure

$$arphi(x)=\left(egin{array}{c} \pi^+(x)\ (v+h(x)+i\pi^0(x))/\sqrt{2} \end{array}
ight)$$

which be written as ("polar decomposition")

$$arphi(x) = \Sigma(x) \left(egin{array}{c} 0 \ (v+h(x))/\sqrt{2} \end{array}
ight)$$

 π^{\pm} , π^{0} are Goldstone bosons In the theory with global symmetry, they are massless. In the theory with gauge symmetry, they are gauge degrees of freedom, and become part of W, Z

Before the Higgs Boson discovery, higgsless non-linear sigma model was an option:

one can eliminate h(x) and still have EWSB via Sigma term in the Higgsless model

$$\mathcal{L}_H \to \mathcal{L}_\Sigma = \frac{v^2}{4} \operatorname{tr} \left(\left[\mathcal{D}^{\mu} \Sigma \right]^{\dagger} \mathcal{D}_{\mu} \Sigma \right)$$

$$= \frac{v^2}{4} \left[g^2 W^+ W^- + \frac{g}{\sqrt{2}} W^- \sigma^- + \frac{g}{2} W^0 \sigma^3 + \frac{g'}{2} B \right|^2 \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix}$$

$$= \frac{v^2}{4} \left[g^2 W^+ W^- + \frac{1}{2} (-gW^0 + g'B)^2 \right]$$

Goldstone bosons (pions) become the longitudinal components of vector bosons V_L = W[±]_L, Z_L

Non-linear sigma model

There are many 4D CP-conserving operators that can be written down e.g.

$$\mathcal{L}_1 = \frac{1}{2}g^2 \alpha_1 B_{\mu\nu} \operatorname{Tr}(TF^{\mu\nu})$$

where

$$_{2} = \frac{1}{2} ig\alpha_{2} B_{\mu\nu} \operatorname{Tr}(T[V^{\mu}, V^{\nu}])$$

$$\mathcal{C}_3 = ig\alpha_3 \operatorname{Tr}(F_{\mu\nu}[V^{\mu}, V^{\nu}])$$

$$V_{\mu} \equiv (D_{\mu}\Sigma) \Sigma^{\dagger}$$
$$T \equiv \Sigma \tau^{3} \Sigma^{\dagger}$$
$$\Sigma(x) = \exp\left[i \frac{\varphi^{a}(x) \tau^{a}}{v}\right]$$

$$\mathcal{L}_4 = \alpha_4 [\mathrm{Tr}(V_{\mu}V_{\nu})]^2$$

$$\mathcal{L}_5 = \alpha_5 [\mathrm{Tr}(V_{\mu}V^{\mu})]^2$$

Appelquist, Bernard '80 ; Longitano '80

P

Non-linear sigma model

There are many 4D CP-conserving operators that can be written down

Appelquist, Bernard	'80 ; Longitano '80		$\mathcal{C} = \frac{1}{2}i\alpha \operatorname{Tr}([V, T]] \mathfrak{M}^{\mu} \mathfrak{M}^{\nu} V)$
$\mathcal{L}_5 = \alpha_5 [\mathrm{Tr}(V_{\mu}V^{\mu})]^2$	$\mathcal{L}_{10} = \frac{1}{2} \alpha_{10} [\mathrm{Tr}(TV_{\mu}) \mathrm{Tr}(TV_{\nu})]^2$	$-\operatorname{Tr}(F_{\mu\nu}V^{\mu})\operatorname{Tr}(TV^{\nu})]$	$\times \mathrm{Tr}(TV^{\mu})\mathrm{Tr}(TV^{\nu})$
$\mathcal{L}_4 = \alpha_4 [\mathrm{Tr}(V_\mu V_\nu)]^2$	$\mathcal{L}_{9} = \frac{1}{2} i g \alpha_{9} \operatorname{Tr}(TF_{\mu\nu}) \operatorname{Tr}(T[V^{\mu}, V^{\nu}])$	$\mathcal{L}_{14} = \alpha_{14} [\mathrm{Tr}(F_{\mu\nu}V^{\nu})\mathrm{Tr}(TV^{\mu})$	$\mathcal{L}_{17} = \frac{1}{2} i \alpha_{17} \operatorname{Tr} [T(\mathfrak{D}_{\mu} V_{\nu} + \mathfrak{D}_{\nu} V_{\mu})]$
$\mathcal{L}_3 = ig\alpha_3 \operatorname{Tr}(F_{\mu\nu}[V^{\mu}, V^{\nu}])$	$\mathcal{L}_8 = \frac{1}{4}g^2 \alpha_8 [\mathrm{Tr}(TF_{\mu\nu})]^2$	$\mathcal{L}_{13} = \frac{1}{2} \alpha_{13} [\mathrm{Tr}(T \mathcal{D}_{\mu} V_{\nu})]^2$	$ imes { m Tr}(V^{\mu}V^{ u})$
$\mathcal{L}_2 = \frac{1}{2} i g \alpha_2 B_{\mu\nu} \mathrm{Tr}(T[V^{\mu}, V^{\nu}])$	$\mathcal{L}_{7} = \alpha_{7} \operatorname{Tr}(V_{\mu}V^{\mu})[\operatorname{Tr}(TV_{\nu})]^{2}$	$\mathcal{L}_{12} = \frac{1}{2} \alpha_{12} \operatorname{Tr}(T \mathfrak{N}_{\mu} \mathfrak{N}_{\nu} V^{\nu}) \operatorname{Tr}(T V^{\mu})$	$\mathcal{L}_{16} = i\alpha_{16} \operatorname{Tr}[T(\mathfrak{N}_{\mu}V_{\nu} + \mathfrak{N}_{\nu}V_{\mu})]$
$\mathcal{L}_1 = \frac{1}{2}g^2 \alpha_1 B_{\mu\nu} \operatorname{Tr}(TF^{\mu\nu})$	$\mathcal{L}_6 = \alpha_6 \operatorname{Tr}(V_{\mu}V_{\nu}) \operatorname{Tr}(TV^{\mu}) \operatorname{Tr}(TV^{\nu})$	$\mathcal{L}_{11} = \alpha_{11} \operatorname{Tr}[(\mathfrak{D}_{\mu} V^{\mu})^2]$	$\mathcal{L}_{15} = 2i\alpha_{15} \operatorname{Tr}(V_{\mu} \mathcal{D}_{\nu} V^{\nu}) \operatorname{Tr}(TV^{\mu})$

Non-linear sigma model

There are many 4D CP-conserving operators that can be written down

••••	$\mathcal{L}_{18} = \frac{1}{2} i \alpha_{18} \operatorname{Tr}([V_{\mu}, T] \mathfrak{D}^{\mu} \mathfrak{D}^{\nu} V_{\nu})$		
Appelquist, Bernard			
$\mathcal{L}_5 = \alpha_5 [\mathrm{Tr}(V_{\mu}V^{\mu})]^2$	$\mathcal{L}_{10} = \frac{1}{2} \alpha_{10} [\text{Tr}(TV_{\mu}) \text{Tr}(TV_{\nu})]^2$	$-\operatorname{Tr}(F_{\mu\nu}V^{\mu})\operatorname{Tr}(TV^{\nu})]$	$ imes \mathrm{Tr}(TV^{\mu})\mathrm{Tr}(TV^{\nu})$
$\mathcal{L}_{4} = \alpha_{4} [\mathrm{Tr}(V_{\mu}V_{\nu})]^{2}$	$\mathcal{L}_{9} = \frac{1}{2} i g \alpha_{9} \operatorname{Tr}(TF_{\mu\nu}) \operatorname{Tr}(T[V^{\mu}, V^{\nu}])$	$\mathcal{L}_{14} = \alpha_{14} [\mathrm{Tr}(F_{\mu\nu}V^{\nu})\mathrm{Tr}(TV^{\mu})$	$\mathcal{L}_{17} = \frac{1}{2} i \alpha_{17} \operatorname{Tr} [T(\mathfrak{D}_{\mu} V_{\nu} + \mathfrak{D}_{\nu} V_{\mu})]$
$\mathcal{L}_3 = ig\alpha_3 \operatorname{Tr}(F_{\mu\nu}[V^{\mu}, V^{\nu}])$	$\mathcal{L}_8 = \frac{1}{4}g^2 \alpha_8 [\mathrm{Tr}(TF_{\mu\nu})]^2$	$\mathcal{L}_{13} = \frac{1}{2} \alpha_{13} [\mathrm{Tr}(T \mathcal{D}_{\mu} V_{\nu})]^2$	$ imes { m Tr}(V^{\mu}V^{ u})$
$\mathcal{L}_2 = \frac{1}{2} i g \alpha_2 B_{\mu\nu} \mathrm{Tr}(T[V^{\mu}, V^{\nu}])$	$\mathcal{L}_7 = \alpha_7 \operatorname{Tr}(V_{\mu}V^{\mu})[\operatorname{Tr}(TV_{\nu})]^2$	$\mathcal{L}_{12} = \frac{1}{2} \alpha_{12} \operatorname{Tr}(T \mathcal{D}_{\mu} \mathcal{D}_{\nu} V^{\nu}) \operatorname{Tr}(T V^{\mu})$	$\mathcal{L}_{16} = i\alpha_{16} \operatorname{Tr}[T(\mathfrak{N}_{\mu}V_{\nu} + \mathfrak{N}_{\nu}V_{\mu})]$
$\mathcal{L}_1 = \frac{1}{2}g^2 \alpha_1 B_{\mu\nu} \operatorname{Tr}(TF^{\mu\nu})$	$\mathcal{L}_6 = \alpha_6 \operatorname{Tr}(V_{\mu}V_{\nu}) \operatorname{Tr}(TV^{\mu}) \operatorname{Tr}(TV^{\nu})$	$\mathcal{L}_{11} = \alpha_{11} \operatorname{Tr}[(\mathfrak{D}_{\mu} V^{\mu})^2]$	$\mathcal{L}_{15} = 2i\alpha_{15} \operatorname{Tr}(V_{\mu} \mathcal{D}_{\nu} V^{\nu}) \operatorname{Tr}(TV^{\mu})$

which can be tested at the LHC

the only quartic interactions under custodial symmetry

$$\mathcal{L}_{4} = \alpha_{4} (\operatorname{tr} [V_{\mu}V_{\nu}])^{2}$$

$$\mathcal{L}_{5} = \alpha_{5} (\operatorname{tr} [V_{\mu}V^{\mu}])^{2}$$

AB, Eboli, Gonzalez–Garcia, Mizukoshi, Novaes, Zacharov '98

followed by

Eboli, Gonzalez-Garcia, Lietti, Novaes '00; Beyer, Kilian, Krstonosic, Monig, Reuter, Schmidt, Schroder '06; Eboli, 0.03 Gonzalez–Garcia, Mizukoshi '06

On the other hand Higgs boson is one of the best candidates to unitarise VV->VV amplitude!

Indeed, the SM Higgs designed to do a perfect job in unitarising $V_L, V_L \rightarrow V_L, V_L$ amplitude! Z,Z-W+, W-Unitarity Cross Section (pb 4000 is lost 3500 3000 2500 2000 1500 1000 600 800 1000 1200 1400 1600 1800 2000 200 400 Centre Mass Energy (GeV) Amplitude $\propto s$ Cross section $\propto s^2$ Z.Z - W+. W-4000 3500 W 3000 2500 2000 1500 1000

500

200

Ζ

Indeed, the SM Higgs designed to do a perfect job in unitarising $V_L, V_L \rightarrow V_L, V_L$ amplitude!

Indeed, the SM Higgs designed to do a perfect job in unitarising $V_L, V_L \rightarrow V_L, V_L$ amplitude!

Observation agrees with SM prediction, on one hand ...

Higgs Boson Status

On the other hand, 10-100% window for Higgs couplings variation still open, allowing any promising BSM theory to take place

So, while Higgs Boson Discovery has completed the puzzle of the Standard model ...

But it has raised even more questions than the number of answers it has given!

So, the main question is: which

Higgs boson was discovered?!

just a few out of many recent papers on this subject ...

Bonnet, Ota, Rauch, Winter'12; Azatov, Contino, Galloway'12; Delgado, Nardini, Quiros'12; Corbett, Eboli, Gonzalez-Fraile, Gonzalez-Garcia'12; Djouadi,Moreau'13; Falkowski,Riva,Urbano'13; Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira'13; Dawson, Furlan, Lewis'13; Dolan, Englert, Spannowsky'13; Biswas, Gabrielli, Margaroli, Mele'13; Atwood, Sudhir, Soni'13; Belanger, Dumont, Ellwanger, Gunion, Kraml'13; Delaunay, Grojean, Perez'13; Montull, Riva, Salvioni, Torre'13; Englert, Freitas, Muhlleitner, Plehn, Rauch, Spira, Walz'14; Ellis, Sanz, You'14; Cacciapaglia, Deandrea, La Rochelle, Flament'14; Kagan, Perez, Petriello, Soreq, Stoynev, Zupan'14 Brivio, Corbett, Éboli, Gavela, Gonzalez-Fraile, Gonzalez-Garcia, Merlo, Rigolin'14 Buchalla, Cata, Celis, Krause'15; Hartling, Kumar, Logan '15; Dicus,Kao,Repko'15; Langenegger,Spira,Strebel '15; Hernández, Dib, Zerwekh '15

Alexander Belyaev

Cancellation requires exact SM coupling!

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= \frac{v^2}{4} \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} + b_3 \frac{h^3}{v^3} + \cdots \right) \operatorname{Tr} \left[\partial_{\mu} U \partial^{\mu} U^{\dagger} \right] & \stackrel{\text{Giudice, Grojean,}}{\text{Pomarol, Rattazzi '07}} \\ &+ \frac{1}{2} (\partial_{\mu} h)^2 - \frac{1}{2} m_h^2 h^2 - d_3 \lambda v h^3 - d_4 \frac{\lambda}{4} h^4 + \cdots \right. \quad \left(U \equiv \Sigma \quad ! \right) \end{aligned}$$

0

where $C_V = 1$ in SM $\mathcal{L} = C_V q_{SM} h V_L V_L + \dots$

- The Large increases in V, V, scattering, even for small deviations (~10%) from SM.
- Could provide model independent way to probe Higgs boson coupling to gauge bosons (C_v).

Case of multi-boson production

By power-counting, the scattering amplitude grows with energy as

$$A_{NL\sigma M}(2 \to n) \sim \frac{s}{v^n}$$

Case of multi-boson production

By power-counting, the scattering amplitude grows with energy as $A_{NL\sigma M}(2\to n)\sim \frac{s}{v^n}$

The cross section is expressed via Amplitude and the phase space as
$$\sigma(2 o n)\sim rac{1}{s}\,\mathcal{A}^2(s)\,s^{n-2}$$

Case of multi-boson production

By power-counting, the scattering amplitude grows with energy as $A_{NL\sigma M}(2 \to n) \sim \frac{s}{v^n}$

The cross section is expressed via Amplitude and the phase space as
$$\sigma(2 o n) \sim rac{1}{s}\,\mathcal{A}^2(s)\,s^{n-2}$$

So, $2 \rightarrow n$ cross section grows as s^{n-1}

$$\sigma(2 \to n) \propto \frac{1}{s} \left(\frac{s}{v^n}\right)^2 s^{n-2}$$

Transverse "pollution" is one of the main problems!

- Transverse "pollution"
 - VV→ VV cross section is dominated by the transverse VV scattering the main background!

	$\sqrt{s} = 2 \text{ TeV}$				
Channel	CX for $C_v = 1$ (SM) (pb)	CX for $C_v = 0.9$ (pb)			
$Z_L Z_L \longrightarrow W_L W_L$	0.13	295			
$ZZ \rightarrow WW$ (full)	610	655			

AB, Oliveira, Rosenfeld, Thomas '12

- Despite large increases in V_L scattering, the overall effect on spin averaged cross section is moderate.
- One needs to find a way to isolate the longitudinal components of scattering, to enable us to measure C_V .

The picture at the level of pp collision is even worse ...

	14 Te	eV	33 TeV		
Process	with (without)) VBF cuts	with (with	out) VBF cuts	
	a=1.0	a=0.9	a=1.0	a=0.9	
	b=1.0	b=1.0	b=1.0	b=1.0	
$pp \rightarrow jjW^+W^-$	95.2 (1820)	99.3 (1700)	512 (5120)	540 (5790)	
$pp \rightarrow jjW^+W^-h$	0.011 (0.206)	0.0088 (0.172)	0.0765 (0.914)	0.0626 (0.758)	
$pp \rightarrow jjhhh$	1.16×10^{-4} (3.01×10^{-4})	0.0566 (0.0613)	0.00115 (0.00165)	1.85 (1.46)	

AB, Oliveira, Rosenfeld, Thomas '12

The picture at the level of pp collision is even worse ...

	14 Te	V	$33 { m TeV}$		
Process	with (without)) VBF cuts	with (without) VBF cuts		
	a=1.0	a=0.9	a=1.0	a=0.9	
20	b=1.0	b=1.0	b = 1.0	b=1.0	
$pp \rightarrow jjW^+W^-$	95.2 (1820)	99.3 (1700)	512 (5120)	540 (5790)	
$pp \rightarrow jjW^+W^-h$	0.011 (0.206)	0.0088 (0.172)	0.0765 (0.914)	0.0626 (0.758)	
$pp \rightarrow jjhhh$	1.16×10^{-4} (3.01×10^{-4})	0.0566 (0.0613)	0.00115 (0.00165)	1.85 (1.46)	

AB, Oliveira, Rosenfeld, Thomas '12

One should notice a problem here! Message: do not trust results based on the single package (Madgraph in this case) even if it quotes 1% MC error!

What is the next step?

- Devise optimal cuts capable of selecting the contribution from the longitudinally polarized gauge bosons.
- Hence increase sensitivity to C_V .
- We show that this is possible using a combination of three main observables.
 - + Observable 1, $heta_V$
 - Observable 2, $heta^*$
 - + Observable 3, $\sqrt{s_{\scriptscriptstyle VV}}$ of vector boson scattering

Observables $\theta_V, \theta^*, \sqrt{s_{_{VV}}}$

- θ_V , angle in rest frame of vector boson scattering between incoming and outgoing vector.
- θ^* , angle in rest frame of decaying boson, between fermion in the decay products and direction of boost to get to the rest frame.
- $\sqrt{s_{VV}}$ = invariant mass of all decay products.

Direction of boost to rest frame of Z

Observable 1, θ_V

Overall increase in cross section if
 C_v = 0 and much larger proportion
 of longitudinally polarized bosons.

Therefore cuts which reduce C_v = 1 more than C_v = 0 should increase the proportion of longitudinally polarized bosons.
e.g. | cos θ_V | < 0.5
Transversely polarised bosons have large contribution from t-channel amplitude with dominant forward-backward scattering.

Observable 1, θ_V

Overall increase in cross section if
 C_v = 0 and much larger proportion
 of longitudinally polarized bosons.

Therefore cuts which reduce C_v = 1 more than C_v = 0 should increase the proportion of longitudinally polarized bosons.
e.g. | cos θ_V | < 0.5
Transversely polarised bosons have large contribution from t-channel amplitude with dominant

forward-backward scattering.

Observable 2, θ^*

$$P(\cos \theta^*) = f_L P_L(\cos \theta^*) + f_+ P_+(\cos \theta^*) + f_- P_-(\cos \theta^*)$$

with, $f_L + f_+ + f_- = 1$

we can reconstruct the average polarizations of the vector bosons!

Observable 2, θ^*

- $C_v = 0$ case has a much larger cross section for small $\cos \theta^*$ than the $C_v = 1$ case.
- The cut $|\cos \theta_V| < 0.5$ increases this difference.

this suggests optimal cut to increase fraction longitudinally polarised would be cut on both θ_V and θ^* .

e.g. $|\cos \theta_V| < 0.5$

and $|\cos\theta^*| < 0.5$

Alexander Belyaev

Center Mass Energy (GeV)

Effect of $cos(\theta_v)$ cut in 3D

dependence on C_v becomes more pronounced after $\cos(\theta_v)$ cut which enhance relative L/T polarisation ratio of vector bosons

Does this work at the level of pp scattering?

- So far only discussed VV \rightarrow VV at parton level.
 - The full process at LHC is much more involved many more diagrams, large background
 - cuts may not be quite effective
- Need to study LHC sensitivity to probe fraction of longitudinal polarisation and therefore measure C_V .
- Ongoing work, so far $pp \rightarrow jjZZ \rightarrow e^+e^-\mu^+\mu^-jj$ processes has been studied
- Currently it is being extended to all relevant processes and decays

- MADGRAPH & CalcHEP
- Kinematical cuts

NEXT

• MADGRAPH & CalcHEP

Kinematical cuts

Acceptance cuts:

VBF cuts:

 $p_T^j > 30 \text{ GeV}, \ |\eta_j| < 4.5$ $p_T^e > 20 \text{ GeV}, \ |\eta_e| < 2.5$ $p_T^\mu > 20 \text{ GeV}, \ |\eta_e| < 2.5$

Z boson ID cuts:

 $\Delta \eta_{jj} > 4, E_j > 300 \text{ GeV}$ $|M_{ee,\mu\mu} - M_Z| \le 10 \text{ GeV}$

• Definition of θ_v from $q_1q_2 \rightarrow q_3q_4ZZ$:

a) find two pairs of the final and initial quarks, (q1, q3) & (q2, q4)with the minimal angle between them in cms frame b) find p_v^1 , p_v^2 in the initial state: $p_v^1 = q3 - q1 \& p_v^2 = q4 - q2$ c) find θ_v

• Definition of θ_v from $q_1q_2 \rightarrow q_3q_4ZZ$:

a) find two pairs of the final and initial quarks, (q1, q3) & (q2, q4)with the minimal angle between them in cms frame b) find p_v^1 , p_v^2 in the initial state: $p_v^1 = q3 - q1 \& p_v^2 = q4 - q2$ c) find θ_v

Let us find how well cuts work

NEXT

Let us find how well cuts work

- Cuts used

 - $|\cos \theta_V| < 0.5$ Invariant mass (4I) > 500 GeV
- Large increase in longitudinal fraction from 0.05 to 0.34 for $C_V = 1$ vs $C_V = 0$.
- Very small cross section for studied process, but should be ~ x 250 if semi-leptonic decays and complete set of processes (ZZ, WW, WZ) included.
- Expect sensitivity to C_V at approx 10% with 100 fb^{-1} .

NEXT

Beyond the VV \rightarrow VV scattering ...

Initial cuts: $ \Delta R_{ij} > 0.4$		VBF cuts: CalcH		IEP & M	adgraph	results	
$ \Delta R_{jj} > 0.4$ $P_T^j > 50 \text{ GeV}$		$ \Delta \eta_{jj} > 5$ $E_j > 1500 \text{ GeV}$			AB, Hamers, Thomas (work in progress)		
Process	VBF cuts	$\frac{13}{a=1.0}$	TeV $a = 0.9$	$33 \ 33 \ a = 1.0$	TeV $a = 0.9$	$\frac{100}{a = 1.0}$	$\frac{\text{TeV}}{a = 0.9}$
$pp \rightarrow jjW^+W^-$	× ✓	$9.88 \cdot 10^{3}$ 12.92	$9.88 \cdot 10^{3}$ 12.69	$6.06 \cdot 10^4$ 475.38	$6.04 \cdot 10^4$ 473.85	$3.52 \cdot 10^5$ $5.49 \cdot 10^3$	$3.52 \cdot 10^5$ $5.47 \cdot 10^3$
$pp \rightarrow jjW^+W^-h$	× √	1.71 $1.26 \cdot 10^{-2}$	$1.43 \\ 8.80 \cdot 10^{-2}$	$16.25 \\ 0.077$	$15.34 \\ 1.93$	$686.76 \\ 154.26$	$602.19 \\ 185.18$
$pp \rightarrow jjhh$	× ✓	$\begin{array}{c} 0.51 \\ 0.02 \end{array}$	$\begin{array}{c} 0.36 \\ 0.01 \end{array}$	$\begin{array}{c} 3.49 \\ 0.77 \end{array}$	$2.93 \\ 0.77$	$16.97 \\ 5.56$	$16.97 \\ 9.20$
$pp \rightarrow jjhhh$	× ✓	$2.\overline{38 \cdot 10^{-4}} \\ 6.14 \cdot 10^{-6}$	$\frac{2.50 \cdot 10^{-2}}{2.06 \cdot 10^{-3}}$	$\frac{1.97 \cdot 10^{-3}}{4.39 \cdot 10^{-4}}$	$1.37 \\ 0.75$	$1.23 \cdot 10^{-2} \\ 4.70 \cdot 10^{-3}$	$\begin{array}{c} 46.03\\ 41.03\end{array}$

Beyond the VV \rightarrow VV scattering ...

Initial cuts:		VBF cuts: C		Calc⊦	CalcHEP & Madgraph results			
$ \Delta R_{jj} > 0.4$		$ \Delta \eta_{ii} > 5$						
$P_T^j > 50$	GeV	E_j	> 1500 G	eV	AB, Hamers, Thomas (work in progress)			
Process	VBF cuts	$13 \mathrm{TeV}$		$33 { m TeV}$		$100 { m TeV}$		
1 100055	VDI Cuts	a = 1.0	a = 0.9	a = 1.0	a = 0.9	a = 1.0	a = 0.9	
$m \rightarrow i i W^+ W^-$	×	$9.88 \cdot 10^3$	$9.88 \cdot 10^3$	$6.06\cdot 10^4$	$6.04 \cdot 10^4$	$3.52\cdot 10^5$	$3.52 \cdot 10^5$	
$pp \rightarrow jjvv + vv$	\checkmark	12.92	12.69	475.38	473.85	$5.49 \cdot 10^{3}$	$5.47 \cdot 10^{3}$	
$m \rightarrow i i W^+ W^- h$	×	1.71	1.43	16.25	15.34	686.76	602.19	
$pp \rightarrow jj vv vv n$	\checkmark	$1.26 \cdot 10^{-2}$	$8.80 \cdot 10^{-2}$	0.077	1.93	154.26	185.18	
$m \rightarrow iihh$	×	0.51	0.36	3.49	2.93	16.97	16.97	
	✓	0.02	0.01	0.77	0.77	5.50	9.20	
	×	$2.38 \cdot 10^{-4}$	$2.50 \cdot 10^{-2}$	$1.97 \cdot 10^{-3}$	1.37	$1.23 \cdot 10^{-2}$	46.03	
	√	$6.14 \cdot 10^{-6}$	$2.06 \cdot 10^{-3}$	$4.39 \cdot 10^{-4}$	0.75	$4.70 \cdot 10^{-3}$	41.03	
VV→ hhh can be quite promising!								

pp→ jj hhh process

Alexander Belyaev

NEX

Probing Higgs boson with VBF

Unitarity violation at large energies

Unitarity violation at large energies

Sensitivity of the future pp colliders

	33 TeV					
Unitarity not violated	a	ευ	σ [fb]	$\mathcal{L}_{ ext{int}} \cdot \sigma$	$\mathcal{L}_{ ext{int}} \cdot \sigma \cdot arepsilon_{\mathcal{U}}$	
	0.70	37.14 %	3.97	397.27	147.55	
	0.80	44.18 %	2.61	261.24	115.41	
Total number of events	0.90	57.79 %	0.93	93.09	53.79	
	0.92	61.47 %	0.64	63.76	39.19	
$\mathcal{L}_{int} = 100 \text{fb}^{-1}$	0.94	67.48 %	0.38	38.16	25.75	
	0.96	77.42 %	0.18	18.12	14.03	
	0.97	82.31 %	0.11	10.56	8.69	
Total number of events	0.98	88.62 %	0.05	4.86	4.30	
and set all at the set that the	0.99	96.61 %	0.01	1.30	1.26	
nor violating unitarity	1.01	96.18 %	0.01	1.41	1.35	
	1.02	88.41 %	0.06	5.57	4.92	
	1.03	79.96 %	0.13	12.76	10.21	
	1.04	73.08 %	0.23	23.28	17.01	
	1.06	62.95 %	0.55	55.42	34.89	
	1.08	55.69 %	1.05	104.69	58.30	
22 ToV/ sould be sensitive to	1.10	50.67 %	1.72	172.06	87.18	
33 lev: could be sensitive to	1.20	31.25 %	9.04	904.09	282.53	
signature down to <u>5%</u> deviation	1.30	22.32 %	26.16	2616.39	583.98	

Sensitivity of the future pp colliders

	100 TeV						
Unitarity not violated	a	ευ	σ [fb]	$\mathcal{L}_{ ext{int}} \cdot \sigma$	$\mathcal{L}_{ ext{int}} \cdot \sigma \cdot arepsilon_{\mathcal{U}}$		
	0.70	7.35 %	164.05	16405.29	1205.79		
	0.80	7.72 %	107.51	10751.06	829.98		
Total number of events	-0.90	13.56 %	37.62	3761.54	510.06		
	0.92	15.96 %	26.15	2615.40	417.42		
$\mathcal{L}_{int} = 100 \text{fb}^{-1}$	0.94	20.07 %	15.19	1519.02	304.87		
	0.96	22.06 %	7.44	743.67	164.05		
	0.97	28.31 %	4.30	429.77	121.67		
Total number of events	0.98	35.21~%	1.98	198.20	69.78		
and a starburg constraints a	0.99	47.24 %	0.52	51.71	24.43		
nor violating unitarity	1.01	47.82 %	0.55	54.68	26.15		
	-1.02	31.00 %	2.72	226.54	70.23		
	1.03	25.45 %	5.18	518.47	131.95		
	1.04	22.35 %	9.43	947.99	211.88		
	1.06	16.46 %	22.50	2249.61	370.29		
	-1.08	13.44 %	42.24	4224.29	567.74		
100 ToV: could be consitive to	1.10	10.11 %	69.44	6943.99	702.04		
TOUTEY. COULD be sensitive to	1.20	5.46 %	367.84	36684.40	2002.97		
signature down to <u>1%</u> deviation	1.30	3.73 %	1054.19	105419.35	3932.14		

Conclusions/Outlook

VV→VV study

- combination of cuts on three variables can isolate the longitudinal components of vector boson scattering
- sensitivity is independent of that which can be deduced from direct Higgs searches
- only HVV coupling is involved in the VBF process, so it can be measured in a much more model-independent way
- work in progress the complete set of ZZ, WW, WZ VBF processes should be included ; prospect to measure the HVV coupling with 10% precision at 100 fb⁻¹ in a (more) model-independent way
- VV→ hhh study
 - Extremely sensitive to HVV deviations from SM
 - LHC@13 TeV is not sensitive to this signature CS is too low
 - 100 TeV pp collider could potentially probe HVV coupling at 1% level
 - work in progress BGs are being estimated

