University of Birmingham Tuesday, May 09th, 2000.

Common Track Segment Finder for L1/L2?

André Schöning ETH Zürich

- Erratum (table 1 of L1 feasibility study)
- PROs and CONTRAs of design strategies
- Minimal Solution for common (L1/L2) track segment finding

Erratum I

Number of valid coarse track segments:

Trigger Layer	Cells	Valid Patterns (types)	Valid Masks	Ambiguities
1	000	127	336	26
1	-100	155	191	4
1	00-1	11	0	0
1	100	9	0	0
1	001	133	208	6
2	000	143	671	201
2	-100	243	452	15
2	00-1	36	46	0
2	100	30	49	0
2	001	199	413	16
3	000	169	975	384
3	-100	323	835	31
3	00-1	56	197	0
3	100	50	168	0
3	001	288	799	33
4	000	283	889	307
4	-100	405	370	11
4	00-1	43	22	0
4	100	52	26	0
4	001	393	335	12

track segments with $p_t > 90~{
m MeV}$ at 20 MHz

synchronisation frequency. Blue numbers calculated by

M. Plintovic.

Andre.Schoning@desy.de

University of Birmingham May 2000

Erratum II

E.g. third group has 3000 valid masks including ambiguities but only about 1000 types of masks.

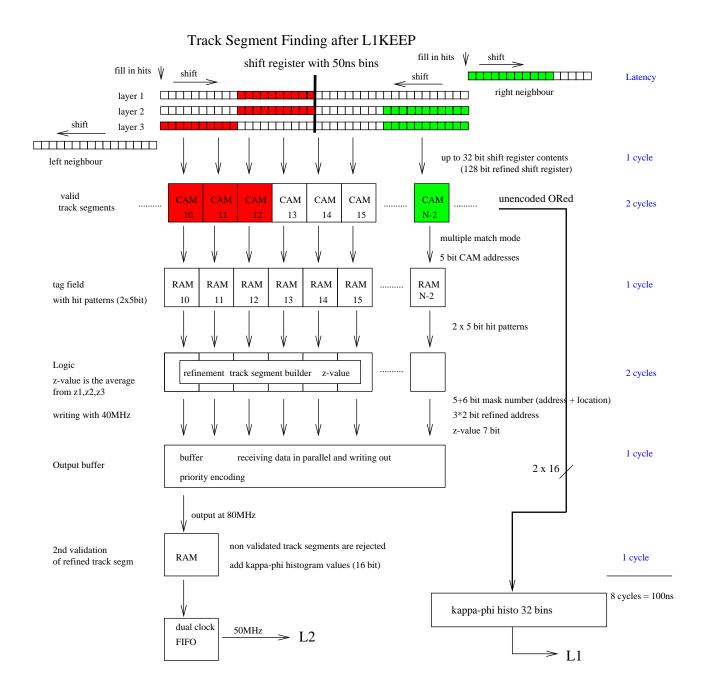
full implementation \Rightarrow 100 ESBs

Resources can be saved by:

- tighter cut on χ^2_{cut}
- neglecting "seldom" masks
- neglecting redundant patterns
- increasing p_t cut from 90 MeV \rightarrow 100, 120 MeV

Design Strategy

- Pivot Element(s) on fly
 - fewer patterns (only types)
 - t_0 not known
 - time dependence has to be stored and buffered
- Full Shift Register Analysis (minimal solution in L1 feasibility study)
 - + t_0 known/assumed
 - + no buffering needed
 - more CAMs needed


Question: Can a full Shift Register Analysis performed on fly?

Common L1/L2 Track Segment Finding

• Speed

- 1: At 80 MHz 4 segments per CAM per BC can be found using the multiple match mode \rightarrow sufficient
- 2: only 2 cycles for unencoded mode \rightarrow sufficient
- κ - ϕ Lookup
 - 1: same κ - ϕ tracks in single CAM: only at least one match to be recognised \rightarrow requires 100 bits input (4 ESBs per CAM)
 - 2: unencoded mode with ORed output lines from several CAMs: optimal for unencoded data transfer to L1 trigger card → preferred solution
 - 3: encoded mode: optimal? only for encoded data transfer to L1 trigger card otherwise decoding necessary → number tracks limited
- Efficient usage of resources
 - take same CAMs/ESBs for L1/L2 track segment finding
 - use both unencoded (L1) and encoded (L2) CAM output (both can be configured at the same time)
 - no additional resources needed apart from some LEs

Common L1/L2 Track Finding

Summary

- Simple concept for efficient and common L1/L2 track segment finding presented
 - simultaneous usage of encoded and unencoded mode needs verification
- New estimates on resources: e.g. for third trigger layer
 100 ESBs for CAMs + 25-50 ESBs for RAMs (tag field)
- Numbers on valid patterns need verification
- Full algorithm should be programmed