A Fast Track Trigger with High

Resolution for H1

Paul Newman

Representing the H1 UK Groups

(Universities of Birmingham, Lancaster, Liverpool,

Manchester, Rutherford Appleton Laboratory, Queen Mary and

Westfield College)

- Introduction.
- Physics Motivation for a new Tracking Trigger.
- System Overview.
- Level 1 System.
- Simulated Performance.
- Requests from PPESP.

Trigger Rates after the HERA Upgrade

• HERA upgrade 2000-1 ... factor ~ 5 increase in luminosity. At $\mathcal{L}^{max} \sim 70 \ \mu b^{-1} s^{-1}$, rates of observable ep interactions:

Kinematic range	Rate [Hz]
$Q^2 <$ 1 GeV 2	1000
1 $< Q^2 <$ 10 GeV 2	40
10 GeV $^2 \! < Q^2$	4

• Max input rate to level 4 (filter farm) trigger $\sim 100 \ Hz$. Without improved selectivity at earlier stages of trigger, prescaling will be necessary:

Q^2	Present	Prescale	Resulting
	Prescale	after Upgrade	Efficiency
0	∞	∞	0%
5	5	25	4%
40	2	10	10%
150	1	1	100%

Most Exclusive Final States at low Q^2 subject to these prescales

Example Physics Processes

Many measurements crucial to our understanding of QCD dynamics / proton structure ...

- 1) have low visible cross section.
- 2) do not contain high p_t final states for easy triggering.
- 3) display track based signatures.

1) Open charm physics: $(D^* \to D^0 \pi_{slow} \to K \pi \pi_{slow})$

- Direct $x_g g(x_g)$ via $\gamma^{(\star)}g \to c \bar{c}$
- \bullet Charm structure function $F_2^{c \overline{c}}$
- Gluon distribution of photon, pomeron ...
- Open beauty physics through $b \rightarrow c$ decays.

Proton gluon density

Stat. errors $\sim 25\%$ from < 96 data.

Much better stats and high $p_{_T}(D^*)$ data needed for detailed analysis!

Example Physics Processes

2) Vector meson production:

- $\gamma p \rightarrow V p$ calculable in pQCD?
- Novel parton dynamics?
- ho , J/ψ not well measured at high Q^2 , |t|
- Little data so far for ϕ , ρ' , ψ' , Υ ...
- Inelastic J/ψ poorly understood.

3) High $p_{\scriptscriptstyle T}$ Charged Particles

- High p_t charged particles almost always interesting
 e.g. W, Z (semi)-leptonic decays.
 Heavy flavour semi-leptonic decays.
 Isolated muons with missing p_t.
- \bullet FTT accurately measures track $p_{\scriptscriptstyle T}$ at early stages of trigger.

4) Discovery Potential

• Exotic processes can show up as anomalous charged / neutral final state yields . . .

QCD Instantons.

Centauro / Anti-centauro events.

Disoriented chiral condensate (Bjorken).

• FTT can be used in conjunction with calo jet trigger etc.

Example Physics Processes

	1996 DATA	ESTIMATED $97 - 00$	ESTIMATED 2001++
PROCESS	$13 \ \mathrm{pb}^{-1}$	$92 \ \mathrm{pb}^{-1}$ delivered	600 pb^{-1}
	DELIVERED	(OPTIMISTIC!)	DELIVERED
D^{st} in DIS $(Q^2 > 2~{ m GeV}^2)$	583	4100	27000
D^{st} in DIS FROM b DECAY	(6)	(00)	(420)
D^{st} in diffractive DIS ($Q^2 > 2~{ m GeV}^2)$	11	80	510
D^* in γp	788	5500	36000
D^* in γp FROM b DECAY	(13)	(06)	(009)
Elastic $ ho^0 o \pi^+\pi^ (Q^2>30~{ m GeV}^2)$	91	110	740
Quasi-elastic $J/\psi ightarrow \mu^+\mu^ (Q^2>2{ m GeV}^2)$	156	1100	7200
Quasi-elastic $J/\psi ightarrow e^+e^-$ ($Q^2>2{ m GeV}^2$)	74	520	3400

Track Triggering in H1

• Present H1 track triggering ...

Loose selection at L1 (DCr ϕ) (Deadtime free $2.3~\mu{\rm s}$)

L4 refinements based on full track rec'n ($800 \ \mu s$)

• Proposed Fast Track Trigger (FTT) ...

Decisions at L1 ($2.3~\mu s$), L2 ($25~\mu s$) and L3 ($\lesssim 100~\mu s$)

	${\sf DCr}\phi$	FTT
number of DC layers	10	12
hit resolution	5 mm	500 μ m
$p_{\scriptscriptstyle T}$ range	$\gtrsim 400~{ m MeV}$	$> 100 { m MeV}$
track multiplicity	$N_{{ m DCr}\phi} \propto N_{{ m tracks}}$	precise
p_t resolution	2 loose thresholds	$\sigma(1/p_{\scriptscriptstyle T}) \sim$
	$400,800~{ m MeV}$	$0.05/{ m GeV}$
z-information	no	yes
topological info.	Limited, $r\phi$ only.	Detailed, 3D
invariant masses	no	yes

The FTT will ...

• Generally improve H1 track triggering capabilities.

• Identify exclusive final states early enough to avoid large prescales.

Principle of the Fast Track Trigger

H1 Central Jet Chambers:

CJC1 - 30 cells in ϕ , 24 layers of sense wires in r

CJC2 - 60 cells in ϕ , 32 layers of sense wires in r

Take signals from four groups of three layers, all cells.

e.g. CJC1: (3,5,7), (10,12,14), (18,20,22), CJC2: (4,6,8).

Advances in integration and speed of electronics and rapidly reducing costs allow . . .

- Detailed drift chamber analysis on-line.
- Identification of complex signatures from track

combinations at L1-3.

Specifications at L1-L3

	L1	L2	L3
Latency	$2.3\mu{ m s}$	$25~\mu{ m s}$	$\stackrel{<}{_\sim} 100~\mu{ m s}$
	Q-t analysis		
Tasks		Track Segment	Event
	Track segment	linking.	rec'n.
	finding		
Data	Coarsely	Tracks	
for	linked	with precisely	Combinations
Trigger	track	determined	of Tracks
Decision	segments	3-momenta	
Basis of	Tracks with	Track $p_{\scriptscriptstyle T}$	
Trigger	variable $p_{\scriptscriptstyle T}$	multiplicity,	Invariant
Decision	thresholds,	topology	mass sums
	multiplicity, sign?	total E_t	$D^* \Delta M \dots$

H1-UK groups have taken responsibility for the L1 system.

Overview of L1 System

Functionality:

- Analogue CJC signals taken from front of FADC cards.
- Preamp. and 30 8-bit FADCs digitize signals at 80 MHz.
- Q t algorithm implemented on FPGAs
- Coarse/fine track segment finding done using CAM functionality of the "FPGA farm"
- Track segment data processed \rightarrow merged $p_{_T}$, ϕ , z-info.

Front End Digitisation and Segment Finding

Implemented in e.g. Altera Apex 20K1000 with $\sim 10^6$ gates.

Finding Valid Masks for Trigger Groups

- Masks defined in shift registers, corresponding to valid track segments in 3 wires of a trigger layer.
- Entries in shift registers corresponding to left-right drift space ambiguity.
- Adjacent cells analysed together to deal with tracks crossing cell boundaries.
- Bunch crossing of origin can be identified where tracks pass on either side of wires or cross cell boundaries.

Determination of ϕ , $p_{_T}$

Assumption of vertex in r- ϕ plane allows ϕ and p_{τ} determination.

Valid track segment masks converted to (p_T , ϕ) values using Look Up Tables

Level 1 Trigger Decision

Feasibility study of level 1 trigger decisions in progress.

Several possible improvements over existing $\mathrm{DCr}\phi$ trigger . . .

- Lower / sharper / more flexible $p_{\scriptscriptstyle T}$ thresholds.
- Improved determination of bunch crossing of origin.
- Better track multiplicity / topology information

Pattern match track segments with the same $p_{\scriptscriptstyle T}$, ϕ from up to four radial groups at $20~{\rm MHz}.$

e.g. 2 out of 4 segment coincidence could define a track.

Level 1 Trigger Viability

First simulation studies promising ...

Correct number of tracks reconstructed by L1 trigger.

Significant improvement on $\mathsf{DCr}\phi$

Bunch crossing of origin ($\times 96~ns$) determination ...

 $p_T - \phi$ track segment pattern matching could be realised using CAMs at marginal hardware costs.

Crucial question will be time constraints

Level 2 Track Segment Linking

Level 2 track linking is performed by pattern matching track segments with the same $p_{\scriptscriptstyle T}$, ϕ from all four radial groups. Achieved using CAMs

- 1. (p_{T} , ϕ) vectors loaded into 1 CAM per radial group.
- 2. All track segments loaded into SRAM.
- 3. SRAM contents matched in (p_T, ϕ) with each CAM.
- 4. Best match with ≥ 2 coincidences defines track.
- 5. 'Dirty' CAM containing already linked segments vetoes double counting.
- 6. Optimisation procedure in DSP.

Development at an advanced stage (DESY, ETH Zürich).

Level 3 System

- Tracks combined to search for complex final state signatures ($D^*, J/\psi, \rho \dots$)
- L3 reject can be made anytime during $\sim 800~\mu s$ detector readout time.
- Early decision reduces deadtime, allowing more events to be processed.
- With L3 decision after $100~\mu s,\,500~Hz$ processing costs 5% deadtime.

Software selection to run on commercial processors ...

• 2 PCs enough to trigger on wide range of processes.

Detailed work yet to begin.

FTT Resolution in $p_{_T}$, ϕ , heta

FTT level 1, 2 algorithms have been simulated ... Efficiencies, resolutions, robustness studied with real events.

Track resolutions in $1/p_{T}$, ϕ (relative to full off-line reconstruction, using 1997 D^{*} data) ...

 $\begin{array}{rcl} \sigma(1/p_{T}) & \sim & 0.05 \ {\rm GeV^{-1}} \\ \\ \sigma(\phi) & \sim & 5 \ {\rm mrad} \end{array}$

Reconstruction of Track θ

 θ calculated from . . .

- z of hits from L1 FTT charge division $[\sigma(z_{\rm hit}) \sim 6 \,{\rm cm}]$
- z of vertex from L1 MWPC trigger [$\sigma(z_{
 m vtx}) \sim 2.5~{
 m cm}$]

(relative to full off-line reconstruction, using 1997 D^* data) ...

 $\sigma(\theta) \sim 50 \,\mathrm{mrad}$

Performance for D^* Events

Open charm usually identified through 'golden' decay channel, $D^* \rightarrow D^0 \pi_{slow} \rightarrow K \pi \pi_{slow}.$

Selection through cuts on ...

- 1. $M(K\pi) M(D_{\text{nom}}^0)$
- 2. $\Delta M = M(K\pi\pi_{slow}) M(K\pi)$

Resolutions evaluated using sample of 1997 D^* events.

Performance for D^* Events

 D^* finding efficiency studied relative to off-line selection for various cuts on D^0 mass window and $\Delta M.$

Trigger rates estimated for <u>peak</u> post upgrade luminosities by extrapolation from current rates.

80% efficiency achievable with $\lesssim 5~Hz$ peak rate.

Efficiencies ~ 5% higher for $b \to c \to D^*$.

Transverse Momentum Selectivity

Large rate reductions can be achieved for many physics channels with $p_{\scriptscriptstyle T}$ cuts at level 2.

e.g. Υ , J/ψ , $Z \to l^+ l^-$, $W \to \mu \nu \dots$ Resolution $\sigma\left(\frac{1}{p_T}\right) \sim 0.05 \text{ GeV}^{-1}$.

Fast Track Trigger

Estimated Trigger Efficiencies

	trigge	er rates		trigg	ler
	with F	TT [Hz	2]	efficienc	cy [%]
Process	L	L2	L3	with FTT	without
D* decay (DIS)	160 - 500	30	5	02	1
D* decay (e -tagged γ p)	120 - 500	25	4	60	~
$ ho ightarrow \pi^+ \pi^-$ (DIS)	0†	2.5	L	80	2
J/ $\Psi ightarrow$ ee, $\mu\mu$	50	20	1-3	12-60	1-3
$\Upsilon ightarrow$ ee, $\mu\mu$	50	5	0.5-2	12-60	1-3

UK Commitments to Level 1 System

- 'Plug through' analogue card from CJC FADCs
- Front End Module Design and Construction
- Control software / Interfaces
- L1 Service Module / trigger card
- L1 Trigger algorithm design / simulation
- Monitoring software to compare with CJC readout

Costing of Level 1 System

I EW	(x) ISOD	EFFURI (Statt Years)	SOURCE OF EFFORI
Analogue Plug-through Card (150)	30K	<mark>0.25</mark> + 0.5	RAL + Manchester
Front End Modules (30)	135k	1 + 8	RAL + RAL PPD
Coding segment finding algorithm		2	DESY + Zürich
Crate control processor (2)	10k		
Control software and Interfaces		<mark>0.75</mark> + 0.25	RAL + Manchester
Service Module / trigger card (2)	401	L	Birmingham + Manchester
Compact PCI Crates (2)	20k		
Cabling	10k		
Workstation and Interfaces	ЧS		
Trigger algorithms / simulation		2.5	Birmingham + Zürich
Monitoring Software		1.25	UK Universities
Total (incl. VAT @ 17.5 %)	260k	<mark>4</mark> + 8.5	

Items in red are requests from PPESP.

Funding Model

Total project (L1-3) costed at DM 1950

EQI	EQUIPMENT COSTS		
DESY	250k	Approved	
Dortmund	310k	Approved	
ETH Zürich	550k	Seeking approval	
Cracow	70k	Seeking approval	
UK	770k	This request	

4 Staff Years of effort are requested from RAL-ID.

Other physicist and technical effort ...

STAFF YEAR ALLOCATIONS	
DESY	3 SY
Dortmund	8 SY
ETH Zürich	4 SY
Cracow	2 SY
UK	6 SY

Fully commissioned system by end 2001 gives ≥ 5 years run-time.

FRONT END MODULE		
Preliminary design report	now - 03/00	
First design	03/00 - 06/00	
Board layout	06/00 - 12/00	
Prototype manufacture	12/00 - 01/01	
Debug / testing prototype	01/01 - 03/01	
Installation of prototype at H1	before 03/01 st	
Redesign and layout	04/01 - 06/01	
Main production	06/01 - 12/01	

* end of HERA shutdown is planned for 03/01

OTHER MILESTONES	
Segment finding algorithm Finalised	before 04/00
Segment finding programmed on FPGAs	before 03/01 *
L1 trigger viability studies	now - 03/00
L1 trigger algorithm design	03/00 - 11/00
Service Module design, build, test	before 02/01
Installation of Service Module	before 03/01 st
Installation of Analogue Plug through cards	before 03/01 st
First version of Control Software	before 03/01 st
Full System Operational	before 12/01

Summary and Status

- HERA Upgrade presents unique opportunities in QCD / low x Physics.
- FTT will allow H1 to exploit these possibilities in full.
- Trigger selectivity will be improved for many other processes.
- Simulations show that very high performance device is possible.
- Physics benefits recognised by DESY directorate \rightarrow Approval from DESY PRC.
- L2-3 Resource approval obtained at DESY / German Universities, being sought in Switzerland, Poland.
- H1-UK groups request $\pounds 260k$ plus 4 staff years from RAL-ID for construction of L1 system.