Fast Track Trigger L1 Algorithm

Implementation
Scheme proposed by A. Baird, D. Sankey
after discussions in Birmingham 18 Feb 2000
Notes (and misconceptions) by P. Newman

1 Introduction

This is a very rough attempt to describe the F'T'T L1 algorithm on the basis
of diagrmas produced by Dave and Adam and some notes from Dave. - It
surely needs lots of refinement and considerably more detail before it can
be called a design! The aim here is to provide a starting point from which
discussion can follow at the next meeting (21st March).

2 Overview

Figure 1 shows a basic overview of the proposed system and its interconnec-
tions (thanks Yves!). The timing output from the @) — ¢ feeds the segment
finding shift registers. The integrated charge information associated with
each hit (leading to the z coordinate) is buffered to be matched with seg-
ments later and fed to L2.

After a hit in the pivot element of the shift registers, the register contents
are interrogated (CAMs?). Successfully found track segments are passed to
the L1 trigger logic and also to the L2 pattern finding buffer. Here, valid
patterns are stored, with the following information ...

Time at which the pivot element was hit (20 MHz precision) (5-6 bits)

Fine pattern of this segment (80 MHz precision) (12 bit)

Pattern number (? bit)

Cell number (5 bit)

|
QT | to L2
> L2 S| Out
L Q "1 Qr buffer [> Duffer
| |
| |
B 111 |
e ey
S o AR a
shi | >
segmentl register] pa;;;;: CAM |
I L_}r _______ |
L1 Keep
—— T —
| v |
L1 logic | L |
logic
| |
L_i__J
Central
trigger

Figure 1: System Overview

A L1 keep signal from the central trigger activates the large output CAM,
which gives accurate k-¢ information as a function of ¢11xeep — tpivot, the time
difference between the pivot element activation and the L1Keep. The fine
(80 MHz) pattern, corrected in ¢ for cell number and the pattern number
are given. The information from the large CAM has to be indexed by tpiyor
and cell number.

3 Q—t

An overview of the proposed @@ — t algorithm is shown in figure 2, which
shows the manipulations performed on a set of three wires forming a trigger
group. - Each wire has two inputs to the () — t algorithm, corresponding to
the two wire ends.

Information from both wire ends is used in hit detection, from which
the timing information is obtained. The integrated charge calculations from
both ends of each CJC wire are used to obtain the z information. In the

‘ 20 location running
summer
hit detection
memory
ﬂ> save Q z p Z, t(pivot) :: >
4x3 20 location running
‘ sample summer

adder

$ hit detection ——— ‘

L1 Keep
4x3
‘ sample
adder

3 bits to shift registers

Figure 2: @) —t Overview

example shown in figure 2, the z coordinate of the segment is obtained by
averaging over the three wires of a trigger group. The information from the
left hand end of each of the three wires is summed (4x3 sample adder - four
fold to convert between 20 MHz and 80 MHz) and similarly the right hand
ends of the wires. The information from successive digitisations is summed
using a sliding charge integration window centred in time on the hit in the
middle of the three wires (i.e. the pivot layer). A valid segment match found
in the shift registers / CAMs triggers the passing of the summed charge
information to the ‘2’ step. Here a z coordinate for the segment is obtained
by the standard charge division technique. The z and ¢, information are
then buffered until a L1Keep signal arrives.

Optionally, we could also latch on the hit in the centre wire, as is done
in the segment finding algorithm (pivot layer). This would make the z cal-
culation fully independent of the segment finding.

4 L1 Segment Finding

1uS = 20x50nS = 80x12.5nS

-

left card shift register

shift register

crude track
detection

shift register ——— save Q (output

pattern
number(s))

shift register

shift register

shift register ——— save Q

shift register

shift register

crude track
detection

shift register ——— save Q (output

pattern
number(s))

shift register

shift register

crude track
detection
(output
pattern
number(s))

shift register ——— save Q

shift register

shift register

crude track
detection

shift register ——— save Q (output

pattern
number(s))

shift register

right card shift register

crude track
detection
(output
pattern
number(s))

Figure 3: Segment Finding Overview

5in OR

OR Binning

Kappa 4 bits
Phi 4 bits
duration 4 bits

Maximum 5
results per
20MHz clock
using encoded
system.

Figure 3 summarises the segment finding algorithm for a complete front
end module (5 groups of 3 wires, plus external connections to neighbouring
cards to deal with cases where tracks pass cell boundaries at the edge of
the space covered by a card. The ‘save @)’ label feeds back in as shown in
figure 2. The shift registers containing the identified hits feed into the first
level (20 MHz) segment finding. This is done in 2 stages to ensure that the
correlations between neighbouring cells covered by the same card are dealt
with. The output from the segment finding is ORed together and encoded
as shown in figure 3 for output to the L2 pattern buffer and the L1 rtigger
card (see figure 1).

A nice simplification to the segment finding is possible, provided all wire
groups in one card are from the same radial layer. Under these circumstances,
the valid masks for each group of three wires are identical. The corresponding
k and ¢ values differ only by the addition of a multiple of the cell number
to the ¢ coordinate. It therefore seems reasonable to multiplex the input to
the track segment finding. The precise details of how that could work need
to be defined.

5 Trigger Logic

Figure 4 gives an overview of the suggested logic leading to the L1 trigger
signal. This is presumably implemented in a single CAM(?) and all sits
on the trigger card / service module. The input data from the Front End
Module is the list of linked track segments and the range of validity in terms of
bunch crossings. The array driver clocks out the (k,$) results for each bunch
crossing. This information is ORed within one layer and then summed with
the other layers at different radii to look for coincidences (cluster detector).
The output from the cluster finding is then fed to the combinatorial logic for
the trigger.

Recall that the granularity is likely to be no better than 64 x 16 in (x,¢),
such that the ¢ resolution is half a cell. For a given segment, the ¢ and & val-
ues therefore do not change over the range of bunch crossings for which they
are valid. It is probably possible to have completely independent histograms
(e.g. 11 x 16 in k,¢) for different regions of ¢.

HHHEE

trigger
logic

6 x ADC card
I
15 Array cluster
driver Array detector
6 x ADC card
1
1
1
1
6 x ADC card
1
I

Figure 4: Trigger Logic Overview

